論文の概要: Graph Learning: A Survey
- arxiv url: http://arxiv.org/abs/2105.00696v1
- Date: Mon, 3 May 2021 09:06:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 20:28:45.832518
- Title: Graph Learning: A Survey
- Title(参考訳): グラフ学習:調査
- Authors: Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, Huan
Liu
- Abstract要約: 本稿では,グラフ学習の現状について概観する。
グラフ信号処理,行列分解,ランダムウォーク,ディープラーニングなど,既存のグラフ学習手法の4つのカテゴリに特に注目されている。
テキスト,画像,科学,知識グラフ,最適化といった分野におけるグラフ学習アプリケーションについて検討する。
- 参考スコア(独自算出の注目度): 38.245120261668816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are widely used as a popular representation of the network structure
of connected data. Graph data can be found in a broad spectrum of application
domains such as social systems, ecosystems, biological networks, knowledge
graphs, and information systems. With the continuous penetration of artificial
intelligence technologies, graph learning (i.e., machine learning on graphs) is
gaining attention from both researchers and practitioners. Graph learning
proves effective for many tasks, such as classification, link prediction, and
matching. Generally, graph learning methods extract relevant features of graphs
by taking advantage of machine learning algorithms. In this survey, we present
a comprehensive overview on the state-of-the-art of graph learning. Special
attention is paid to four categories of existing graph learning methods,
including graph signal processing, matrix factorization, random walk, and deep
learning. Major models and algorithms under these categories are reviewed
respectively. We examine graph learning applications in areas such as text,
images, science, knowledge graphs, and combinatorial optimization. In addition,
we discuss several promising research directions in this field.
- Abstract(参考訳): グラフは、接続されたデータのネットワーク構造の一般的な表現として広く使われている。
グラフデータは、ソーシャルシステム、エコシステム、生物学的ネットワーク、知識グラフ、情報システムなど、幅広い分野のアプリケーションドメインで見ることができる。
人工知能技術の継続的な浸透により、グラフ学習(グラフ上の機械学習)は研究者と実践者の両方から注目を集めている。
グラフ学習は、分類、リンク予測、マッチングといった多くのタスクに有効である。
一般に、グラフ学習法は機械学習アルゴリズムを利用してグラフの関連特徴を抽出する。
本稿では,グラフ学習の現状について概観する。
グラフ信号処理,行列分解,ランダムウォーク,ディープラーニングなど,既存のグラフ学習手法の4つのカテゴリに特に注目されている。
これらのカテゴリの主要なモデルとアルゴリズムをそれぞれレビューする。
テキスト,画像,科学,知識グラフ,組合せ最適化などの分野におけるグラフ学習応用について検討する。
また,本分野での有望な研究方向性についても論じる。
関連論文リスト
- Curriculum Graph Machine Learning: A Survey [51.89783017927647]
カリキュラムグラフ機械学習(Graph CL)は、グラフ機械学習とカリキュラム学習の強みを統合する。
本稿では,グラフCLのアプローチを概観し,最近の研究動向を概観する。
論文 参考訳(メタデータ) (2023-02-06T16:59:25Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Graph Learning and Its Advancements on Large Language Models: A Holistic Survey [37.01696685233113]
この調査は、グラフ学習と事前訓練された言語モデルの統合における最新の進歩に焦点を当てる。
グラフ構造の観点から現在の研究を解析し、グラフ学習における最新の応用、トレンド、課題について論じる。
論文 参考訳(メタデータ) (2022-12-17T22:05:07Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Graph Lifelong Learning: A Survey [6.545297572977323]
本稿では,グラフ生涯学習のモチベーション,ポテンシャル,最先端のアプローチ,オープンな課題について論じる。
我々はこの新興分野に対する広範な研究と開発への関心を期待する。
論文 参考訳(メタデータ) (2022-02-22T06:14:07Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Machine Learning on Graphs: A Model and Comprehensive Taxonomy [22.73365477040205]
グラフニューラルネットワーク、ネットワーク埋め込み、グラフ正規化モデルの間のギャップを埋める。
具体的には、グラフ上の半教師付き学習のための一般的なアルゴリズムを一般化するグラフデコーダモデル( GraphEDM)を提案する。
論文 参考訳(メタデータ) (2020-05-07T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。