論文の概要: Universal Domain Adaptation in Ordinal Regression
- arxiv url: http://arxiv.org/abs/2106.11576v1
- Date: Tue, 22 Jun 2021 07:23:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 22:57:12.876398
- Title: Universal Domain Adaptation in Ordinal Regression
- Title(参考訳): 順序回帰におけるユニバーサルドメイン適応
- Authors: Chidlovskii Boris, Assem Sadek, Christian Wolf
- Abstract要約: 順序回帰(OR)における普遍領域適応(UDA)の問題に対処する。
本稿では, クラスタリングの仮定に基づいて, OR設定のアンダーパフォーマンスに基づいて, 分類のために開発されたUDA技術について述べる。
本稿では,OR分類器と注文学習の補助的タスクを補完する手法を提案する。これは,共通インスタンスとプライベートインスタンスの識別と,ランキングによるクラスラベルのプライベートターゲットイメージへの拡張という二重の役割を担っている。
- 参考スコア(独自算出の注目度): 11.703377306384695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of universal domain adaptation (UDA) in ordinal
regression (OR), which attempts to solve classification problems in which
labels are not independent, but follow a natural order. We show that the UDA
techniques developed for classification and based on the clustering assumption,
under-perform in OR settings. We propose a method that complements the OR
classifier with an auxiliary task of order learning, which plays the double
role of discriminating between common and private instances, and expanding
class labels to the private target images via ranking. Combined with
adversarial domain discrimination, our model is able to address the closed set,
partial and open set configurations. We evaluate our method on three face age
estimation datasets, and show that it outperforms the baseline methods.
- Abstract(参考訳): 順序回帰 (or) における普遍的領域適応 (uda) の問題に対処し, ラベルが独立ではなく自然な順序に従う分類問題を解こうとする。
本稿では, クラスタリングの仮定に基づいて, OR 設定のアンダーパフォーマンスに基づいて, 分類のために開発された UDA 技術について述べる。
本稿では,OR分類器と注文学習の補助的タスクを補完する手法を提案する。これは,共通インスタンスとプライベートインスタンスを区別し,クラスラベルをランキングによるプライベートターゲットイメージに拡張する役割を兼ね備えている。
逆領域判別と組み合わせることで、我々のモデルは閉集合、部分集合および開集合の構成に対処することができる。
本手法は,3つの顔年齢推定データセット上で評価し,ベースライン法を上回っていることを示す。
関連論文リスト
- Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation [22.474866164542302]
UDAアプローチはソースとターゲットドメインが同じラベル空間を共有していると一般的に仮定する。
本稿では、SF-OSDA(Source-Free Open-set Domain Adaptation)設定の課題について考察する。
本稿では,サンプルを複数の未知のクラスに分離することで,ターゲット・プライベートカテゴリの粒度を利用したSF-OSDAの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-16T13:52:00Z) - Class-Specific Variational Auto-Encoder for Content-Based Image
Retrieval [95.42181254494287]
本稿では,変分自動エンコーダ(VAE)に対する正規化損失を提案する。
その結果、モデルは、関心のクラスに属するデータを他のあらゆる可能性から識別することを学ぶ。
実験の結果,提案手法はドメイン内およびドメイン外検索における競合よりも優れていた。
論文 参考訳(メタデータ) (2023-04-23T19:51:25Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
対象データの識別クラスタリングとしてドメイン適応問題を再検討する。
本稿では,ラベル付き情報源データよりも並列に教師付き学習目標を用いて,ネットワークを協調的に訓練することを提案する。
5つの人気のあるベンチマークデータセットに対して、慎重にアブレーション研究と広範な実験を行う。
論文 参考訳(メタデータ) (2023-02-23T13:03:48Z) - Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA)は、訓練済みのソースモデルから学習した知識を未確認のターゲットドメインに転送することで、ドメイン適応問題を解決することを目的としている。
既存のほとんどのメソッドは、機能プロトタイプを生成することによって、ターゲットデータに擬似ラベルを割り当てる。
本稿では,PCSRと命名された新しいフレームワークを,クラス内多中心クラスタリングおよび構造規則化戦略を通じてSFDAに取り組むために提案する。
論文 参考訳(メタデータ) (2022-10-14T02:20:48Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
本稿では,局所的なワンホット分類とグローバルなマルチクラス分類を組み合わせることで,視覚的・時間的整合性を両立させる。
3つの大規模ReIDデータセットの実験結果は、教師なしと教師なしの両方のドメイン適応型ReIDタスクにおいて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2020-07-21T14:31:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。