論文の概要: Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation
- arxiv url: http://arxiv.org/abs/2404.10574v1
- Date: Tue, 16 Apr 2024 13:52:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:44:15.359149
- Title: Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation
- Title(参考訳): ターゲットプライベートクラスセグメンテーションによる不確実性誘導型オープンソースフリー教師なしドメイン適応
- Authors: Mattia Litrico, Davide Talon, Sebastiano Battiato, Alessio Del Bue, Mario Valerio Giuffrida, Pietro Morerio,
- Abstract要約: UDAアプローチはソースとターゲットドメインが同じラベル空間を共有していると一般的に仮定する。
本稿では、SF-OSDA(Source-Free Open-set Domain Adaptation)設定の課題について考察する。
本稿では,サンプルを複数の未知のクラスに分離することで,ターゲット・プライベートカテゴリの粒度を利用したSF-OSDAの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 22.474866164542302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Standard Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target but usually requires simultaneous access to both source and target data. Moreover, UDA approaches commonly assume that source and target domains share the same labels space. Yet, these two assumptions are hardly satisfied in real-world scenarios. This paper considers the more challenging Source-Free Open-set Domain Adaptation (SF-OSDA) setting, where both assumptions are dropped. We propose a novel approach for SF-OSDA that exploits the granularity of target-private categories by segregating their samples into multiple unknown classes. Starting from an initial clustering-based assignment, our method progressively improves the segregation of target-private samples by refining their pseudo-labels with the guide of an uncertainty-based sample selection module. Additionally, we propose a novel contrastive loss, named NL-InfoNCELoss, that, integrating negative learning into self-supervised contrastive learning, enhances the model robustness to noisy pseudo-labels. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed method over existing approaches, establishing new state-of-the-art performance. Notably, additional analyses show that our method is able to learn the underlying semantics of novel classes, opening the possibility to perform novel class discovery.
- Abstract(参考訳): Standard Unsupervised Domain Adaptation (UDA)は、ラベル付きソースドメインからラベル付きターゲットへの知識の転送を目的としているが、通常はソースデータとターゲットデータの両方に同時アクセスする必要がある。
さらに、UDAアプローチはソースとターゲットドメインが同じラベル空間を共有していると一般的に仮定する。
しかし、この2つの仮定は現実のシナリオではほとんど満たされない。
本稿では,SF-OSDA(Source-Free Open-set Domain Adaptation)の設定について考察する。
本稿では,サンプルを複数の未知のクラスに分離することで,ターゲット・プライベートカテゴリの粒度を利用したSF-OSDAの新しい手法を提案する。
初期クラスタリングに基づく割当てから始めて, 不確実性に基づくサンプル選択モジュールのガイドを用いて擬似ラベルを精製することにより, 対象標本の分離を段階的に改善する。
さらに,NL-InfoNCELoss という新たなコントラスト損失を提案する。これは,自己教師付きコントラスト学習に負の学習を統合することで,ノイズのある擬似ラベルに対するモデルロバスト性を高めるものである。
ベンチマークデータセットの大規模な実験は、提案手法が既存手法よりも優れていることを示し、新しい最先端性能を確立した。
特に,本手法が新規クラスのセマンティクスを学習し,新たなクラス発見を行う可能性を示す。
関連論文リスト
- Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - Dual Moving Average Pseudo-Labeling for Source-Free Inductive Domain
Adaptation [45.024029784248825]
教師なしドメイン適応は、ソースからターゲットドメインに知識を適用することによって、ディープラーニングにおけるデータアノテーションへの依存を減らす。
プライバシと効率上の懸念に対して、ソースフリーなドメイン適応は、トレーニング済みのソースモデルをラベルなしのターゲットドメインに適応することにより、教師なしのドメイン適応を拡張します。
本稿では,DMAPL (Dual moving Average Pseudo-Labeling) という半教師付きファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2022-12-15T23:20:13Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Provably Uncertainty-Guided Universal Domain Adaptation [34.76381510773768]
ユニバーサルドメイン適応(UniDA)は、ラベル付きソースドメインからラベルなしターゲットドメインに知識を転送することを目的としている。
UniDAの主な課題は、識別不能なラベルセットが2つのドメイン間のミスアライメントを引き起こすことである。
潜在空間における対象サンプルの分布を利用した新しい不確実性誘導型UniDAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-19T09:16:07Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
ドメイン適応(DA)は、知識をラベルの豊富なソースドメインから関連するがラベルの少ないターゲットドメインに転送することを目的としている。
低信頼度サンプルの処理による新しいコントラスト学習法を提案する。
提案手法を教師なしと半教師付きの両方のDA設定で評価する。
論文 参考訳(メタデータ) (2022-02-06T15:45:45Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
本稿では,対象データの変換における意味的一貫性に着目した手法を提案する。
本モデルはまず,自信ある予測を発見し,擬似ラベルを用いた分類を行う。
その結果、ラベルなしデータは、ソースクラスまたは未知のクラスに一致した識別クラスに分類される。
論文 参考訳(メタデータ) (2020-10-01T10:44:31Z) - Universal Source-Free Domain Adaptation [57.37520645827318]
ドメイン適応のための新しい2段階学習プロセスを提案する。
Procurementの段階では、今後のカテゴリギャップやドメインシフトに関する事前知識を前提とせず、将来的なソースフリーデプロイメントのためのモデルの提供を目標としています。
Deploymentの段階では、幅広いカテゴリギャップをまたいで動作可能な統一適応アルゴリズムを設計することを目的としている。
論文 参考訳(メタデータ) (2020-04-09T07:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。