Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting
- URL: http://arxiv.org/abs/2106.11712v1
- Date: Tue, 22 Jun 2021 12:30:18 GMT
- Title: Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting
- Authors: Armand Jordana, Justin Carpentier, Ludovic Righetti
- Abstract summary: We introduce a generic and scalable method to learn latent representations of indirectly observed dynamical systems.
We achieve state-of-the-art performances on systems observed directly from raw images.
- Score: 11.771843031752269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling dynamical systems plays a crucial role in capturing and
understanding complex physical phenomena. When physical models are not
sufficiently accurate or hardly describable by analytical formulas, one can use
generic function approximators such as neural networks to capture the system
dynamics directly from sensor measurements. As for now, current methods to
learn the parameters of these neural networks are highly sensitive to the
inherent instability of most dynamical systems of interest, which in turn
prevents the study of very long sequences. In this work, we introduce a generic
and scalable method based on multiple shooting to learn latent representations
of indirectly observed dynamical systems. We achieve state-of-the-art
performances on systems observed directly from raw images. Further, we
demonstrate that our method is robust to noisy measurements and can handle
complex dynamical systems, such as chaotic ones.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
We discuss the architectural regularization that neural networks offer when learning such systems.
We show that simple coordinate networks with few layers can be used to solve multiple problems in modelling dynamical systems.
arXiv Detail & Related papers (2023-03-10T06:21:24Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
Several methods have proposed to integrate priors from classical mechanics into machine learning models.
We take a sober look at the current capabilities of these models.
We find that the use of continuous and time-reversible dynamics benefits models of all classes.
arXiv Detail & Related papers (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings.
NDS uses neural networks to estimate free parameters of the system, predicts residual terms, and numerically integrates over time to predict future states.
arXiv Detail & Related papers (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.