論文の概要: A Stealthy and Robust Fingerprinting Scheme for Generative Models
- arxiv url: http://arxiv.org/abs/2106.11760v1
- Date: Sat, 19 Jun 2021 06:25:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 11:20:14.272246
- Title: A Stealthy and Robust Fingerprinting Scheme for Generative Models
- Title(参考訳): 生成モデルのためのステルスおよびロバストフィンガープリント方式
- Authors: Li Guanlin, Guo Shangwei, Wang Run, Xu Guowen, Zhang Tianwei
- Abstract要約: 本稿では,生成モデルの知的財産保護のための新しいフィンガープリント手法を提案する。
指紋の細粒化と細粒度分類を併用した新しいバックドア埋め込み手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel fingerprinting methodology for the Intellectual
Property protection of generative models. Prior solutions for discriminative
models usually adopt adversarial examples as the fingerprints, which give
anomalous inference behaviors and prediction results. Hence, these methods are
not stealthy and can be easily recognized by the adversary. Our approach
leverages the invisible backdoor technique to overcome the above limitation.
Specifically, we design verification samples, whose model outputs look normal
but can trigger a backdoor classifier to make abnormal predictions. We propose
a new backdoor embedding approach with Unique-Triplet Loss and fine-grained
categorization to enhance the effectiveness of our fingerprints. Extensive
evaluations show that this solution can outperform other strategies with higher
robustness, uniqueness and stealthiness for various GAN models.
- Abstract(参考訳): 本稿では,生成モデルの知的保護のための新しい指紋認証手法を提案する。
識別モデルに対する事前の解は、通常、逆の例を指紋として採用し、異常な推論行動と予測結果を与える。
したがって、これらの手法はステルス性がなく、敵に容易に認識できる。
我々のアプローチは、上記の制限を克服するために見えないバックドア技術を活用する。
具体的には、モデル出力が正常に見えるが、バックドア分類器をトリガーして異常な予測を行う検証サンプルを設計する。
指紋の精度を高めるために,トリップレット損失と細粒度分類を用いた新しいバックドア埋め込み手法を提案する。
広範囲な評価により、様々なGANモデルに対して、より堅牢性、独特性、ステルス性の高い他の戦略よりも優れていることが示されている。
関連論文リスト
- MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Protect-Your-IP: Scalable Source-Tracing and Attribution against Personalized Generation [19.250673262185767]
画像著作権のソーストレーシングと属性の統一的なアプローチを提案する。
本稿では,プロアクティブ戦略とパッシブ戦略を融合した革新的な透かし属性法を提案する。
オンラインで公開されている様々なセレブの肖像画シリーズを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-26T15:14:54Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
大規模言語モデル(LLM)は、さまざまな機械学習タスクにまたがる汎用インテリジェンスを示す。
敵はモデル抽出攻撃を利用して モデル生成で符号化された モデルインテリジェンスを盗むことができる
ウォーターマーキング技術は、モデル生成コンテンツにユニークな識別子を埋め込むことによって、このような攻撃を防御する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-03T06:41:48Z) - Robust Retraining-free GAN Fingerprinting via Personalized Normalization [21.63902009635896]
提案手法は,ParamGen Netsの入力を変更するだけで,異なる指紋をGAN内に埋め込むことができる。
モデルレベルの攻撃と画像レベルの攻撃の両方に対するロバスト性の観点から提案手法の性能は,最先端技術よりも優れている。
論文 参考訳(メタデータ) (2023-11-09T16:09:12Z) - Copyright Protection and Accountability of Generative AI:Attack,
Watermarking and Attribution [7.0159295162418385]
本稿では,GANの著作権保護対策の現状を概観する評価枠組みを提案する。
以上の結果から,入力画像,モデル透かし,帰属ネットワークなどの知的財産権保護手法は,広範囲のGANに好適であることが示唆された。
論文 参考訳(メタデータ) (2023-03-15T06:40:57Z) - Self-supervised GAN Detector [10.963740942220168]
生成モデルは 不正や 破壊 偽ニュースなど 悪意のある目的で悪用される
トレーニング設定外の未確認画像を識別する新しいフレームワークを提案する。
提案手法は,GAN画像の高品質な人工指紋を再構成する人工指紋生成装置から構成する。
論文 参考訳(メタデータ) (2021-11-12T06:19:04Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Protecting Intellectual Property of Generative Adversarial Networks from
Ambiguity Attack [26.937702447957193]
フォトリアリスティック画像作成に広く用いられているGAN(Generative Adrial Networks)は完全に保護されていない。
本稿では,知的財産権(IPR)保護をGANに強制するために,ブラックボックスとホワイトボックスの両方で完全な保護フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-08T17:12:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。