論文の概要: Protect-Your-IP: Scalable Source-Tracing and Attribution against Personalized Generation
- arxiv url: http://arxiv.org/abs/2405.16596v1
- Date: Sun, 26 May 2024 15:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:19:32.301841
- Title: Protect-Your-IP: Scalable Source-Tracing and Attribution against Personalized Generation
- Title(参考訳): Protect-Your-IP: パーソナライズドジェネレーションに対するスケーラブルなソーストレースと属性
- Authors: Runyi Li, Xuanyu Zhang, Zhipei Xu, Yongbing Zhang, Jian Zhang,
- Abstract要約: 画像著作権のソーストレーシングと属性の統一的なアプローチを提案する。
本稿では,プロアクティブ戦略とパッシブ戦略を融合した革新的な透かし属性法を提案する。
オンラインで公開されている様々なセレブの肖像画シリーズを用いて実験を行った。
- 参考スコア(独自算出の注目度): 19.250673262185767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of personalized generation models, users can more readily create images resembling existing content, heightening the risk of violating portrait rights and intellectual property (IP). Traditional post-hoc detection and source-tracing methods for AI-generated content (AIGC) employ proactive watermark approaches; however, these are less effective against personalized generation models. Moreover, attribution techniques for AIGC rely on passive detection but often struggle to differentiate AIGC from authentic images, presenting a substantial challenge. Integrating these two processes into a cohesive framework not only meets the practical demands for protection and forensics but also improves the effectiveness of attribution tasks. Inspired by this insight, we propose a unified approach for image copyright source-tracing and attribution, introducing an innovative watermarking-attribution method that blends proactive and passive strategies. We embed copyright watermarks into protected images and train a watermark decoder to retrieve copyright information from the outputs of personalized models, using this watermark as an initial step for confirming if an image is AIGC-generated. To pinpoint specific generation techniques, we utilize powerful visual backbone networks for classification. Additionally, we implement an incremental learning strategy to adeptly attribute new personalized models without losing prior knowledge, thereby enhancing the model's adaptability to novel generation methods. We have conducted experiments using various celebrity portrait series sourced online, and the results affirm the efficacy of our method in source-tracing and attribution tasks, as well as its robustness against knowledge forgetting.
- Abstract(参考訳): パーソナライズされた世代モデルの出現により、ユーザーは既存のコンテンツに似た画像を容易に作成することができ、肖像画の権利と知的財産権(IP)を侵害するリスクを高めることができる。
AIGC(AIGC)の伝統的なポストホック検出とソーストレーシング手法は、プロアクティブな透かしアプローチを採用しているが、これらはパーソナライズされた生成モデルに対して効果が低い。
さらに、AIGCの属性技術は受動的検出に依存しているが、AIGCを本物の画像と区別するのに苦労することが多く、重大な課題が提示されている。
これら2つのプロセスを結合的なフレームワークに統合することは、保護と法医学の実践的な要求を満たすだけでなく、帰属タスクの有効性を向上させる。
この知見に触発されて、我々は画像著作権のソーストレーシングと属性の統一的アプローチを提案し、プロアクティブ戦略とパッシブ戦略を融合した革新的なウォーターマーキング・アトリビューション手法を導入した。
保護された画像に著作権の透かしを埋め込んで、透かしデコーダを訓練し、パーソナライズされたモデルの出力から著作権情報を検索する。
特定の生成テクニックをピンポイントにするために、我々は強力な視覚バックボーンネットワークを用いて分類する。
さらに,従来の知識を損なうことなく,新たなパーソナライズされたモデルへの適応性を高めるために,段階的な学習戦略を実装した。
オンラインで公開されている様々な有名肖像画シリーズを用いて実験を行い、情報源追跡や帰属タスクにおける手法の有効性と、その知識の忘れに対する堅牢性を確認した。
関連論文リスト
- Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
大規模言語モデル(LLM)は、さまざまな機械学習タスクにまたがる汎用インテリジェンスを示す。
敵はモデル抽出攻撃を利用して モデル生成で符号化された モデルインテリジェンスを盗むことができる
ウォーターマーキング技術は、モデル生成コンテンツにユニークな識別子を埋め込むことによって、このような攻撃を防御する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-03T06:41:48Z) - A Watermark-Conditioned Diffusion Model for IP Protection [31.969286898467985]
拡散モデルにおけるコンテンツ著作権保護のための統一的な透かしフレームワークを提案する。
そこで我々はWaDiffと呼ばれるWadmark条件付き拡散モデルを提案する。
本手法は,検出タスクと所有者識別タスクの両方において有効かつ堅牢である。
論文 参考訳(メタデータ) (2024-03-16T11:08:15Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - CopyScope: Model-level Copyright Infringement Quantification in the
Diffusion Workflow [6.6282087165087304]
著作権侵害の定量化は、AIが生成した画像著作権トレーサビリティへの第一かつ挑戦的なステップである。
モデルレベルからAI生成画像の侵害を定量化する新しいフレームワークであるCopyScopeを提案する。
論文 参考訳(メタデータ) (2023-10-13T13:08:09Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
テキスト・画像拡散モデルの微調整に適した透かしシステムであるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
論文 参考訳(メタデータ) (2023-10-03T19:50:08Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Protecting the Intellectual Properties of Deep Neural Networks with an
Additional Class and Steganographic Images [7.234511676697502]
本稿では,Deep Neural Network(DNN)モデルの知的特性を,追加のクラスとステガノグラフィー画像を用いて保護する手法を提案する。
我々は,ウォーターマークキー画像にユーザの指紋を埋め込むために,最下位ビット(lsb)画像ステガノグラフィを採用する。
Fashion-MNISTとCIFAR-10データセットでは,100%透かし精度と100%指紋認証成功率が得られる。
論文 参考訳(メタデータ) (2021-04-19T11:03:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。