論文の概要: Deep learning for improved global precipitation in numerical weather
prediction systems
- arxiv url: http://arxiv.org/abs/2106.12045v1
- Date: Sun, 20 Jun 2021 05:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-25 04:41:09.961114
- Title: Deep learning for improved global precipitation in numerical weather
prediction systems
- Title(参考訳): 数値気象予報システムにおけるグローバル降水量改善のための深層学習
- Authors: Manmeet Singh, Bipin Kumar, Dev Niyogi, Suryachandra Rao, Sukhpal
Singh Gill, Rajib Chattopadhyay, Ravi S Nanjundiah
- Abstract要約: 我々は、残差学習を用いた深層畳み込みニューラルネットワークのUNETアーキテクチャを、グローバルな降水モデルを学ぶための概念実証として使用しています。
その結果,インド気象局が使用した操作力学モデルと比較した。
この研究は、残差学習に基づくUNETが、目標降水量と物理的関係を解き放つことができることを示す概念実証である。
- 参考スコア(独自算出の注目度): 1.721029532201972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The formation of precipitation in state-of-the-art weather and climate models
is an important process. The understanding of its relationship with other
variables can lead to endless benefits, particularly for the world's monsoon
regions dependent on rainfall as a support for livelihood. Various factors play
a crucial role in the formation of rainfall, and those physical processes are
leading to significant biases in the operational weather forecasts. We use the
UNET architecture of a deep convolutional neural network with residual learning
as a proof of concept to learn global data-driven models of precipitation. The
models are trained on reanalysis datasets projected on the cubed-sphere
projection to minimize errors due to spherical distortion. The results are
compared with the operational dynamical model used by the India Meteorological
Department. The theoretical deep learning-based model shows doubling of the
grid point, as well as area averaged skill measured in Pearson correlation
coefficients relative to operational system. This study is a proof-of-concept
showing that residual learning-based UNET can unravel physical relationships to
target precipitation, and those physical constraints can be used in the
dynamical operational models towards improved precipitation forecasts. Our
results pave the way for the development of online, hybrid models in the
future.
- Abstract(参考訳): 最先端の気象と気候モデルにおける降水の形成は重要な過程である。
他の変数との関係を理解することは、特に降雨に依存するモンスーン地域において、生活支援として無限の利益をもたらす可能性がある。
様々な要因が降雨の形成に重要な役割を担い、これらの物理過程は運用天気予報に重大なバイアスをもたらす。
我々は, 残留学習を概念実証として, 深層畳み込みニューラルネットワークのunetアーキテクチャを用いて, 降水量のグローバルデータ駆動モデルを学ぶ。
モデルでは、球面の歪みによる誤差を最小限に抑えるため、立方体球面投影に投影されたデータセットの再分析を訓練する。
その結果,インド気象局が使用した操作力学モデルと比較した。
理論的深層学習に基づくモデルでは、グリッド点の倍増と、運用システムに対するピアソン相関係数で測定された領域平均スキルが示される。
本研究は, 残差学習に基づくUNETが, 目標降水に対する物理的関係を解き明かし, 降水予測の改善に向けた動的操作モデルにおいて, それらの物理的制約を利用できることを示す概念実証である。
私たちの結果は、将来的にオンラインハイブリッドモデルの開発への道を開くものです。
関連論文リスト
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
本研究では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を併用したハイブリッドモデルを提案する。
CNNは空間的特徴抽出に利用され、LSTMは時間的依存を処理し、予測精度と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-19T03:38:53Z) - Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
パラメータ化は、気候予測において、系統的なエラーと大きな不確実性の主な原因である。
深層学習(DL)に基づくパラメータ化は、計算に高価で高解像度のショートシミュレーションのデータに基づいて訓練されており、気候モデルを改善するための大きな可能性を示している。
本稿では,DLに基づくパラメータ化のための効率的な教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T10:02:49Z) - Analyzing and Exploring Training Recipes for Large-Scale Transformer-Based Weather Prediction [1.3194391758295114]
比較的オフ・ザ・シェルフアーキテクチャ、簡単な訓練手順、適度な計算予算でも高い予測能力が得られることを示す。
具体的には、ERA5データに基づいて最小修正SwinV2変換器をトレーニングし、IFSと比較すると優れた予測技術が得られることを確かめる。
論文 参考訳(メタデータ) (2024-04-30T15:30:14Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。