論文の概要: Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking
- arxiv url: http://arxiv.org/abs/2206.03305v1
- Date: Tue, 7 Jun 2022 13:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 14:24:15.406890
- Title: Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking
- Title(参考訳): 精度モデル予測軌道追従のための物理インスピレーションによる四回転子ダイナミクスの時間学習
- Authors: Alessandro Saviolo, Guanrui Li, Giuseppe Loianno
- Abstract要約: クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
- 参考スコア(独自算出の注目度): 76.27433308688592
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurately modeling quadrotor's system dynamics is critical for guaranteeing
agile, safe, and stable navigation. The model needs to capture the system
behavior in multiple flight regimes and operating conditions, including those
producing highly nonlinear effects such as aerodynamic forces and torques,
rotor interactions, or possible system configuration modifications. Classical
approaches rely on handcrafted models and struggle to generalize and scale to
capture these effects. In this paper, we present a novel Physics-Inspired
Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system
dynamics purely from robot experience. Our approach combines the expressive
power of sparse temporal convolutions and dense feed-forward connections to
make accurate system predictions. In addition, physics constraints are embedded
in the training process to facilitate the network's generalization capabilities
to data outside the training distribution. Finally, we design a model
predictive control approach that incorporates the learned dynamics for accurate
closed-loop trajectory tracking fully exploiting the learned model predictions
in a receding horizon fashion. Experimental results demonstrate that our
approach accurately extracts the structure of the quadrotor's dynamics from
data, capturing effects that would remain hidden to classical approaches. To
the best of our knowledge, this is the first time physics-inspired deep
learning is successfully applied to temporal convolutional networks and to the
system identification task, while concurrently enabling predictive control.
- Abstract(参考訳): quadrotorのシステムダイナミクスを正確にモデリングすることは、アジャイル、安全、安定したナビゲーションを保証する上で重要である。
このモデルは、空力力やトルク、ローターの相互作用、あるいはシステム構成の変更など、高度に非線形な効果を生み出すものを含む、複数の飛行レジームと運用条件でシステムの挙動を捉える必要がある。
古典的なアプローチは手作りのモデルに依存し、これらの効果を捉えるために一般化とスケールに苦労する。
本稿では,物理に触発された時間的畳み込みネットワーク(pi-tcn)を用いて,ロボットの経験から純粋にシステムダイナミクスを学習する手法を提案する。
提案手法は,スパース時間畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
さらに、トレーニングプロセスには物理制約が組み込まれており、トレーニングディストリビューション外のデータへのネットワークの一般化が容易になっている。
最後に,学習したモデル予測を完全に活用した正確な閉ループ軌道追跡に学習ダイナミクスを組み込んだモデル予測制御手法を設計する。
実験の結果,クワッドローターの力学構造をデータから正確に抽出し,古典的アプローチに隠された効果を捉えることができた。
私たちの知る限りでは、物理に触発されたディープラーニングが時間的畳み込みネットワークとシステム識別タスクにうまく適用され、同時に予測制御が可能となったのはこれが初めてです。
関連論文リスト
- MSTFormer: Motion Inspired Spatial-temporal Transformer with
Dynamic-aware Attention for long-term Vessel Trajectory Prediction [0.6451914896767135]
MSTFormer は Transformer に基づく動きインスパイアされた容器軌道予測手法である。
軌道の空間的特徴と運動特徴を記述するためのデータ拡張手法を提案する。
第2に,頻繁な動き変換を伴う軌道点に着目したマルチヘッド動的自己認識機構を提案する。
第三に、モデルの性能をさらに向上させるために、知識にインスパイアされた損失関数を構築する。
論文 参考訳(メタデータ) (2023-03-21T02:11:37Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Online Dynamics Learning for Predictive Control with an Application to
Aerial Robots [3.673994921516517]
予測モデルは学習し、モデルベースのコントローラに適用することができるが、これらのモデルはしばしばオフラインで学習される。
このオフライン設定では、トレーニングデータをまず収集し、精巧なトレーニング手順により予測モデルを学ぶ。
本稿では,デプロイ中の動的モデルの精度を継続的に向上するオンライン動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-19T15:51:25Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling [19.399031618628864]
軌道データから動的モデルを学ぶためのフレームワークを開発する。
出力の値とモデルの内部状態に制約を課す。
様々な力学系に対する提案手法の利点を実験的に実証した。
論文 参考訳(メタデータ) (2021-09-14T02:47:51Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。