論文の概要: A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization
- arxiv url: http://arxiv.org/abs/2106.12086v1
- Date: Tue, 22 Jun 2021 22:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 15:16:24.128555
- Title: A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization
- Title(参考訳): 費用対多目的最適化のためのフェデレーションデータ駆動進化アルゴリズム
- Authors: Jinjin Xu, Yaochu Jin, Wenli Du
- Abstract要約: 本稿では,フェデレートされたデータ駆動型進化的多目的/多目的最適化アルゴリズムを提案する。
複数のクライアントが協調してラジアル・ベーシ関数ネットワークをグローバルなサロゲートとしてトレーニングできるように、サロゲート構築のためのフェデレートラーニングを活用している。
グローバルサロゲートを用いて目的値を近似し、近似された目標値の不確かさレベルを推定するために、中央サーバに新たなフェデレーション獲得関数を提案する。
- 参考スコア(独自算出の注目度): 11.92436948211501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven optimization has found many successful applications in the real
world and received increased attention in the field of evolutionary
optimization. Most existing algorithms assume that the data used for
optimization is always available on a central server for construction of
surrogates. This assumption, however, may fail to hold when the data must be
collected in a distributed way and is subject to privacy restrictions. This
paper aims to propose a federated data-driven evolutionary
multi-/many-objective optimization algorithm. To this end, we leverage
federated learning for surrogate construction so that multiple clients
collaboratively train a radial-basis-function-network as the global surrogate.
Then a new federated acquisition function is proposed for the central server to
approximate the objective values using the global surrogate and estimate the
uncertainty level of the approximated objective values based on the local
models. The performance of the proposed algorithm is verified on a series of
multi/many-objective benchmark problems by comparing it with two
state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.
- Abstract(参考訳): データ駆動最適化は現実世界で多くの成功を収め、進化的最適化の分野で注目を集めている。
既存のアルゴリズムの多くは、最適化に使用されるデータは、常にサーロゲート構築のための中央サーバで利用可能であると仮定している。
しかし、この仮定は、データが分散的に収集され、プライバシーの制限を受ける必要がある場合に、保持されない可能性がある。
本稿では,データ駆動型進化的多目的最適化アルゴリズムを提案する。
そこで我々は,複数のクライアントが協調してラジアル基底関数ネットワークをグローバルサロゲートとして訓練できるように,連合学習を活用してサロゲート構築を行う。
次に, グローバルサロゲートを用いて目的値を近似し, 局所モデルに基づく目標値の不確かさレベルを推定するために, 中央サーバに新たなフェデレーション獲得関数を提案する。
提案アルゴリズムの性能は,2つの最先端サーロゲート支援多目的進化アルゴリズムと比較することにより,多目的・多目的ベンチマーク問題で検証された。
関連論文リスト
- Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization [29.580786235313987]
InvTrEMO(InvTrEMO)の第1回リバーストランスファー・マルチオブジェクト(InvTrEMO)を紹介する。
InvTrEMOは、決定空間がタスク間で正確に整合していない場合でも、多くの一般的な領域で共通の目的関数を利用する。
InvTrEMOは、高い精度の逆モデルを重要な副産物とし、オンデマンドで調整されたソリューションの生成を可能にする。
論文 参考訳(メタデータ) (2023-12-22T14:12:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
提案アルゴリズムは, ランクベース学習, ハイパーボリュームベース非支配探索, 比較的スパースな対象空間における局所探索の3つの部分からなる。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験的結果は,提案アルゴリズムが優れた性能を示すことを示すものである。
論文 参考訳(メタデータ) (2023-04-19T06:25:04Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Data-Driven Evolutionary Multi-Objective Optimization Based on
Multiple-Gradient Descent for Disconnected Pareto Fronts [6.560512252982714]
本稿では,データ駆動型進化的多目的最適化(EMO)アルゴリズムを提案する。
そのインフィル基準は、高価な客観的関数評価を行うための、有望な候補ソリューションのバッチを推奨している。
論文 参考訳(メタデータ) (2022-05-28T06:01:41Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - A Federated Data-Driven Evolutionary Algorithm [10.609815608017065]
既存のデータ駆動進化最適化アルゴリズムでは、すべてのデータが中央に格納される必要がある。
本論文では,複数のデバイスに分散してデータ駆動型最適化を行うフェデレーションデータ駆動型進化型最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-16T17:18:54Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
マルチデータセット特徴一般化ネットワーク(MMFA-AAE)を提案する。
複数のラベル付きデータセットから普遍的なドメイン不変の特徴表現を学習し、それを見えないカメラシステムに一般化することができる。
また、最先端の教師付き手法や教師なしのドメイン適応手法を大きなマージンで超えている。
論文 参考訳(メタデータ) (2020-11-25T08:03:15Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
本稿では、フェデレートされた異種最適化アルゴリズムの収束性を分析するためのフレームワークを提供する。
我々は,高速な誤差収束を保ちながら,客観的な矛盾を解消する正規化平均化手法であるFedNovaを提案する。
論文 参考訳(メタデータ) (2020-07-15T05:01:23Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。