論文の概要: Data-Driven Evolutionary Multi-Objective Optimization Based on
Multiple-Gradient Descent for Disconnected Pareto Fronts
- arxiv url: http://arxiv.org/abs/2205.14344v1
- Date: Sat, 28 May 2022 06:01:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-26 15:20:56.593104
- Title: Data-Driven Evolutionary Multi-Objective Optimization Based on
Multiple-Gradient Descent for Disconnected Pareto Fronts
- Title(参考訳): 切り離されたパレートフロントの多重勾配降下に基づくデータ駆動型進化的多目的最適化
- Authors: Renzhi Chen, Ke Li
- Abstract要約: 本稿では,データ駆動型進化的多目的最適化(EMO)アルゴリズムを提案する。
そのインフィル基準は、高価な客観的関数評価を行うための、有望な候補ソリューションのバッチを推奨している。
- 参考スコア(独自算出の注目度): 6.560512252982714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven evolutionary multi-objective optimization (EMO) has been
recognized as an effective approach for multi-objective optimization problems
with expensive objective functions. The current research is mainly developed
for problems with a 'regular' triangle-like Pareto-optimal front (PF), whereas
the performance can significantly deteriorate when the PF consists of
disconnected segments. Furthermore, the offspring reproduction in the current
data-driven EMO does not fully leverage the latent information of the surrogate
model. Bearing these considerations in mind, this paper proposes a data-driven
EMO algorithm based on multiple-gradient descent. By leveraging the regularity
information provided by the up-to-date surrogate model, it is able to
progressively probe a set of well distributed candidate solutions with a
convergence guarantee. In addition, its infill criterion recommends a batch of
promising candidate solutions to conduct expensive objective function
evaluations. Experiments on $33$ benchmark test problem instances with
disconnected PFs fully demonstrate the effectiveness of our proposed method
against four selected peer algorithms.
- Abstract(参考訳): データ駆動進化的多目的最適化(emo)は、高価な目的関数を持つ多目的最適化問題の効果的なアプローチとして認識されている。
本研究は,'正規'三角形様パレートオプティカルフロント(pf)の問題に対して,pfが切り離されたセグメントからなる場合,その性能は著しく低下する可能性がある。
さらに、現在のデータ駆動EMOにおける子孫の再生は、代理モデルの潜伏情報を完全に活用していない。
本稿では,これらの考察を念頭に,多段階降下に基づくデータ駆動型EMOアルゴリズムを提案する。
最新のサロゲートモデルによって提供される正則性情報を活用することにより、収束保証付きよく分散された候補解の集合を段階的に探索することができる。
さらに、infillの基準は、高価な客観的機能評価を行うための有望なソリューションのバッチを推奨している。
335ドルのベンチマークテスト問題インスタンスを分離したpfsを用いた実験により,提案手法が4つのピアアルゴリズムに対して有効であることを実証した。
関連論文リスト
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
効率的な確率的選択に基づく制約付き多目的EAをPSCMOEAと呼ぶ。
a) 評価された解の実現可能性と収束状態に基づく適応探索境界同定スキームのような新しい要素を含む。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
論文 参考訳(メタデータ) (2024-05-22T02:32:58Z) - Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization [29.580786235313987]
InvTrEMO(InvTrEMO)の第1回リバーストランスファー・マルチオブジェクト(InvTrEMO)を紹介する。
InvTrEMOは、決定空間がタスク間で正確に整合していない場合でも、多くの一般的な領域で共通の目的関数を利用する。
InvTrEMOは、高い精度の逆モデルを重要な副産物とし、オンデマンドで調整されたソリューションの生成を可能にする。
論文 参考訳(メタデータ) (2023-12-22T14:12:18Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
高価な関数評価を用いたマルチオブジェクト(MO)ブラックボックス最適化の問題点を考察する。
UeMOと呼ばれる新しい不確実性対応検索フレームワークを提案し、評価のための入力シーケンスを効率的に選択する。
論文 参考訳(メタデータ) (2022-04-12T16:50:48Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
入力出力クエリの静的データセットからブラックボックス目的関数を最大化する入力を探索する問題を考える。
この問題を解決するための一般的なアプローチは、真の客観的関数を近似するプロキシモデルを維持することである。
ここでの大きな課題は、検索中に逆最適化された入力を避ける方法である。
論文 参考訳(メタデータ) (2021-10-27T05:37:12Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization [11.92436948211501]
本稿では,フェデレートされたデータ駆動型進化的多目的/多目的最適化アルゴリズムを提案する。
複数のクライアントが協調してラジアル・ベーシ関数ネットワークをグローバルなサロゲートとしてトレーニングできるように、サロゲート構築のためのフェデレートラーニングを活用している。
グローバルサロゲートを用いて目的値を近似し、近似された目標値の不確かさレベルを推定するために、中央サーバに新たなフェデレーション獲得関数を提案する。
論文 参考訳(メタデータ) (2021-06-22T22:33:24Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。