A Label Management Mechanism for Retinal Fundus Image Classification of
Diabetic Retinopathy
- URL: http://arxiv.org/abs/2106.12284v1
- Date: Wed, 23 Jun 2021 10:05:47 GMT
- Title: A Label Management Mechanism for Retinal Fundus Image Classification of
Diabetic Retinopathy
- Authors: Mengdi Gao, Ximeng Feng, Mufeng Geng, Zhe Jiang, Lei Zhu, Xiangxi
Meng, Chuanqing Zhou, Qiushi Ren and Yanye Lu
- Abstract summary: Training deep neural networks (DNNs) requires an enormous amount of carefully labeled data.
Noisy label data may be introduced when labeling plenty of data, degrading the performance of models.
We propose a novel label management mechanism (LMM) for the DNN to overcome overfitting on the noisy data.
- Score: 11.52575078071384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic retinopathy (DR) remains the most prevalent cause of vision
impairment and irreversible blindness in the working-age adults. Due to the
renaissance of deep learning (DL), DL-based DR diagnosis has become a promising
tool for the early screening and severity grading of DR. However, training deep
neural networks (DNNs) requires an enormous amount of carefully labeled data.
Noisy label data may be introduced when labeling plenty of data, degrading the
performance of models. In this work, we propose a novel label management
mechanism (LMM) for the DNN to overcome overfitting on the noisy data. LMM
utilizes maximum posteriori probability (MAP) in the Bayesian statistic and
time-weighted technique to selectively correct the labels of unclean data,
which gradually purify the training data and improve classification
performance. Comprehensive experiments on both synthetic noise data (Messidor
\& our collected DR dataset) and real-world noise data (ANIMAL-10N)
demonstrated that LMM could boost performance of models and is superior to
three state-of-the-art methods.
Related papers
- GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disorder that often progresses from Mild Cognitive Impairment (MCI)
We introduce GFE-Mamba, a classifier based on Generative Feature Extraction (GFE)
It integrates data from assessment scales, MRI, and PET, enabling deeper multimodal fusion.
Our experimental results demonstrate that the GFE-Mamba model is effective in predicting the conversion from MCI to AD.
arXiv Detail & Related papers (2024-07-22T15:22:33Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity.
We propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification.
We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases.
arXiv Detail & Related papers (2023-12-01T11:06:00Z) - MCRAGE: Synthetic Healthcare Data for Fairness [3.0089659534785853]
We propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE) to augment imbalanced datasets.
MCRAGE involves training a Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes.
We use this synthetic data to augment the existing imbalanced dataset, resulting in a more balanced distribution across all classes.
arXiv Detail & Related papers (2023-10-27T19:02:22Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to
Overcome Data Scarcity [6.802798389355481]
We present a study for diabetic retinopathy (DR) analysis tasks, including lesion segmentation, image quality assessment, and DR grading.
For each task, we introduce a robust training scheme by leveraging ensemble learning, data augmentation, and semi-supervised learning.
We propose reliable pseudo labeling that excludes uncertain pseudo-labels based on the model's confidence scores to reduce the negative effect of noisy pseudo-labels.
arXiv Detail & Related papers (2022-10-18T03:25:00Z) - Boosting Facial Expression Recognition by A Semi-Supervised Progressive
Teacher [54.50747989860957]
We propose a semi-supervised learning algorithm named Progressive Teacher (PT) to utilize reliable FER datasets as well as large-scale unlabeled expression images for effective training.
Experiments on widely-used databases RAF-DB and FERPlus validate the effectiveness of our method, which achieves state-of-the-art performance with accuracy of 89.57% on RAF-DB.
arXiv Detail & Related papers (2022-05-28T07:47:53Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
impured training data [53.122045119395594]
We study how unhealthy samples within the training data affect anomaly detection performance for brain MRI-scans.
We evaluate a method to identify falsely labeled samples directly during training based on the reconstruction error of the AE.
arXiv Detail & Related papers (2022-04-12T13:05:18Z) - Learning from Noisy Labels via Dynamic Loss Thresholding [69.61904305229446]
We propose a novel method named Dynamic Loss Thresholding (DLT)
During the training process, DLT records the loss value of each sample and calculates dynamic loss thresholds.
Experiments on CIFAR-10/100 and Clothing1M demonstrate substantial improvements over recent state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T07:59:03Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.