論文の概要: GraphConfRec: A Graph Neural Network-Based Conference Recommender System
- arxiv url: http://arxiv.org/abs/2106.12340v1
- Date: Wed, 23 Jun 2021 12:10:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 19:59:55.177136
- Title: GraphConfRec: A Graph Neural Network-Based Conference Recommender System
- Title(参考訳): GraphConfRec: グラフニューラルネットワークに基づくカンファレンスレコメンダシステム
- Authors: Andreea Iana, Heiko Paulheim
- Abstract要約: SciGraphとグラフニューラルネットワークを組み合わせた会議推薦システムであるGraphConfRecを提案する。
タイトルや抽象だけでなく、共著者関係や引用関係にも基づいている。
最大0.580のリコール@10と最大0.336のMAPをグラフアテンションネットワークベースのレコメンデーションモデルで達成する。
- 参考スコア(独自算出の注目度): 2.66512000865131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's academic publishing model, especially in Computer Science,
conferences commonly constitute the main platforms for releasing the latest
peer-reviewed advancements in their respective fields. However, choosing a
suitable academic venue for publishing one's research can represent a
challenging task considering the plethora of available conferences,
particularly for those at the start of their academic careers, or for those
seeking to publish outside of their usual domain. In this paper, we propose
GraphConfRec, a conference recommender system which combines SciGraph and graph
neural networks, to infer suggestions based not only on title and abstract, but
also on co-authorship and citation relationships. GraphConfRec achieves a
recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention
network-based recommendation model. A user study with 25 subjects supports the
positive results.
- Abstract(参考訳): 今日の学術出版モデル、特にコンピュータ科学において、会議は、それぞれの分野で最新のピアレビューされた進歩を公表するための主要なプラットフォームを構成する。
しかし、研究の出版に適した学術的場を選ぶことは、特に学術的キャリアの開始時や通常の領域外の出版を希望する人にとって、利用可能な会議の多さを考える上で困難な課題となる。
本稿では,SciGraphとグラフニューラルネットワークを組み合わせた会議推薦システムであるGraphConfRecを提案する。
graphconfrecは、リコール@10を0.580まで、マップを0.336まで、グラフアテンションネットワークベースのレコメンデーションモデルで達成する。
25名の被験者によるユーザスタディは、肯定的な結果を支持する。
関連論文リスト
- PageRank Bandits for Link Prediction [72.61386754332776]
リンク予測は、リコメンダシステムやナレッジグラフ補完といった幅広いアプリケーションを用いたグラフ学習において重要な問題である。
本稿では,リンク予測を逐次的意思決定プロセスとして再構成し,各リンク予測インタラクションを逐次的に行う。
本稿では,PageRankとコンテキスト的帯域を結合した新しい融合アルゴリズム PRB (PageRank Bandits) を提案する。
論文 参考訳(メタデータ) (2024-11-03T02:39:28Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
本稿では,グラフ間の効果的な知識伝達パラダイムとしてグラフ領域適応を提案する。
GDAは、ソースグラフとしてタスク関連のグラフを多数導入し、ソースグラフから学習した知識をターゲットグラフに適応させる。
研究状況と課題について概説し、分類学を提案し、代表作の詳細を紹介し、今後の展望について論じる。
論文 参考訳(メタデータ) (2024-02-01T02:44:32Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - PubGraph: A Large-Scale Scientific Knowledge Graph [11.240833731512609]
PubGraphは、大規模な知識グラフの形式を取り入れた、科学的進歩を研究するための新しいリソースである。
PubGraphはWikidata、OpenAlex、Semantic Scholarなど、さまざまなソースからのデータを包括的に統合している。
知識グラフ補完のコアタスクとしてPubGraphから抽出した大規模ベンチマークを複数作成する。
論文 参考訳(メタデータ) (2023-02-04T20:03:55Z) - Pre-training Graph Neural Network for Cross Domain Recommendation [58.057687253631826]
推薦システムは、ユーザ/イテムの埋め込みを学習する中心となるアイテムに対するユーザの潜在的関心を予測する。
グラフ表現学習から事前学習を行う現代美術に着想を得て,クロスドメインレコメンデーションのための事前学習および微調整図を提案する。
我々は,グラフエンコーダの自己教師型事前学習を採用するPCRec (Pre-training Graph Neural Network for Cross-Domain Recommendation) を考案した。
論文 参考訳(メタデータ) (2021-11-16T07:34:42Z) - FedGraph: Federated Graph Learning with Intelligent Sampling [7.798227884125872]
フェデレーション学習は、分散機械学習におけるプライバシー保護のために、多くの研究の注目を集めている。
既存のフェデレーション学習の作業は主に畳み込みニューラルネットワーク(CNN)に焦点を当てており、多くのアプリケーションで人気のあるグラフデータを効率的に扱えない。
本稿では,複数のコンピュータクライアント間でのフェデレーショングラフ学習のためのFedGraphを提案する。
論文 参考訳(メタデータ) (2021-11-02T04:58:03Z) - Structured Citation Trend Prediction Using Graph Neural Networks [6.325999141414098]
本論文では,公開時に論文のトップセットを予測するGNNベースのアーキテクチャを提案する。
実験では,さまざまなカンファレンスを対象とした学術的引用グラフの集合をキュレートし,提案モデルがF1スコアで他の古典的機械学習モデルより優れていることを示す。
論文 参考訳(メタデータ) (2021-04-06T14:58:29Z) - Benchmarking Graph Neural Networks [75.42159546060509]
グラフニューラルネットワーク(GNN)は、グラフ上のデータから分析および学習するための標準ツールキットとなっている。
成功している分野が主流で信頼性を持つようになるためには、進捗を定量化するためにベンチマークを開発する必要がある。
GitHubリポジトリは1,800のスターと339のフォークに到達し、提案されているオープンソースフレームワークの有用性を実証している。
論文 参考訳(メタデータ) (2020-03-02T15:58:46Z) - A Correspondence Analysis Framework for Author-Conference
Recommendations [2.1055643409860743]
我々は、会議や論文など、問題のエンティティ間の適切な関係を導出するために、対応分析(CA)を利用する。
本モデルは,コンテンツベースフィルタリング,協調フィルタリング,ハイブリッドフィルタリングなどの既存手法と比較して有望な結果を示す。
論文 参考訳(メタデータ) (2020-01-08T18:52:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。