論文の概要: PageRank Bandits for Link Prediction
- arxiv url: http://arxiv.org/abs/2411.01410v1
- Date: Sun, 03 Nov 2024 02:39:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:12.509765
- Title: PageRank Bandits for Link Prediction
- Title(参考訳): リンク予測のためのPageRankバンド
- Authors: Yikun Ban, Jiaru Zou, Zihao Li, Yunzhe Qi, Dongqi Fu, Jian Kang, Hanghang Tong, Jingrui He,
- Abstract要約: リンク予測は、リコメンダシステムやナレッジグラフ補完といった幅広いアプリケーションを用いたグラフ学習において重要な問題である。
本稿では,リンク予測を逐次的意思決定プロセスとして再構成し,各リンク予測インタラクションを逐次的に行う。
本稿では,PageRankとコンテキスト的帯域を結合した新しい融合アルゴリズム PRB (PageRank Bandits) を提案する。
- 参考スコア(独自算出の注目度): 72.61386754332776
- License:
- Abstract: Link prediction is a critical problem in graph learning with broad applications such as recommender systems and knowledge graph completion. Numerous research efforts have been directed at solving this problem, including approaches based on similarity metrics and Graph Neural Networks (GNN). However, most existing solutions are still rooted in conventional supervised learning, which makes it challenging to adapt over time to changing customer interests and to address the inherent dilemma of exploitation versus exploration in link prediction. To tackle these challenges, this paper reformulates link prediction as a sequential decision-making process, where each link prediction interaction occurs sequentially. We propose a novel fusion algorithm, PRB (PageRank Bandits), which is the first to combine contextual bandits with PageRank for collaborative exploitation and exploration. We also introduce a new reward formulation and provide a theoretical performance guarantee for PRB. Finally, we extensively evaluate PRB in both online and offline settings, comparing it with bandit-based and graph-based methods. The empirical success of PRB demonstrates the value of the proposed fusion approach. Our code is released at https://github.com/jiaruzouu/PRB.
- Abstract(参考訳): リンク予測は、リコメンダシステムやナレッジグラフ補完といった幅広いアプリケーションを用いたグラフ学習において重要な問題である。
類似度指標に基づくアプローチやグラフニューラルネットワーク(GNN)など、多くの研究がこの問題の解決に向けられている。
しかし、既存のソリューションの多くは、従来型の教師付き学習に根ざしているため、顧客関心の変化に時間をかけて適応し、リンク予測におけるエクスプロイトと探索の固有のジレンマに対処することは困難である。
これらの課題に対処するために,リンク予測を逐次的意思決定プロセスとして再構成し,各リンク予測相互作用を逐次的に行う。
本稿では,PageRankとコンテキスト的帯域を結合した新しい融合アルゴリズム PRB (PageRank Bandits) を提案する。
また、新たな報酬定式化を導入し、PRBの理論的性能保証を提供する。
最後に,オンライン設定とオフライン設定の両方で広範にPRBを評価し,バンドベースの手法とグラフベースの手法を比較した。
PRBの実証的な成功は、提案した融合アプローチの価値を示している。
私たちのコードはhttps://github.com/jiaruzouu/PRB.comで公開されています。
関連論文リスト
- Improving rule mining via embedding-based link prediction [2.422410293747519]
知識グラフのルールマイニングは、説明可能なリンク予測を可能にする。
この2つの家系を組み合わせたいくつかのアプローチが近年提案されている。
2つのアプローチを結合する新しい方法を提案する。
論文 参考訳(メタデータ) (2024-06-14T15:53:30Z) - Probabilistic Demand Forecasting with Graph Neural Networks [0.0]
本稿では,従来のグラフニューラルネットワーク(GNN)の研究に基づいて,2つのコントリビューションを行う。
まず、GNNエンコーダを最先端のDeepARモデルに統合する。この組み合わせモデルは確率的予測を生成し、不確実性の下での意思決定に不可欠である。
第2に,事前定義されたグラフ構造に依存しない記事類似性を用いてグラフを構築することを提案する。実世界の3つのデータセットの実験から,提案手法が非グラフベンチマークを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-23T21:20:48Z) - Variational Disentangled Graph Auto-Encoders for Link Prediction [10.390861526194662]
本稿では,DGAE(disentangled graph auto-encoder)とVDGAE(variantal disentangled graph auto-encoder)の2つの変種を持つ新しいフレームワークを提案する。
提案フレームワークは,グラフのエッジの原因となる潜伏因子を推定し,その表現を一意の潜伏因子に対応する複数のチャネルに分解する。
論文 参考訳(メタデータ) (2023-06-20T06:25:05Z) - Drop Edges and Adapt: a Fairness Enforcing Fine-tuning for Graph Neural
Networks [9.362130313618797]
リンク予測アルゴリズムは、特定の人口集団の個人間のリンクを嫌う傾向がある。
本稿では,グラフニューラルネットワークに対して,微調整戦略を用いて公平性を強制する新しい手法を提案する。
DEAの新たな特徴の1つは、微調整に離散的だが学習可能な隣接行列を使うことができることである。
論文 参考訳(メタデータ) (2023-02-22T16:28:08Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
本稿では,グラフ埋め込みを学習可能なGNNと互換性のあるモデリングフレームワークであるGNNRankを紹介する。
既存の手法と比較して,我々の手法が競争力があり,しばしば優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-02-01T04:19:50Z) - Deep Probabilistic Graph Matching [72.6690550634166]
本稿では,マッチング制約を伴わずに,元のQAPに適合する深層学習ベースのグラフマッチングフレームワークを提案する。
提案手法は,一般的な3つのベンチマーク(Pascal VOC,Wilow Object,SPair-71k)で評価され,すべてのベンチマークにおいて過去の最先端よりも優れていた。
論文 参考訳(メタデータ) (2022-01-05T13:37:27Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - Latent Bandits Revisited [55.88616813182679]
潜伏盗賊問題は、学習エージェントが未知の離散潜伏状態に条件付けられた腕の報酬分布を知知する問題である。
本稿では, 上位信頼境界(UCB)とトンプソンサンプリング(Thompson sample)の両方に基づいて, この設定のための一般的なアルゴリズムを提案する。
我々はアルゴリズムの統一的な理論的解析を行い、遅延状態の数がアクションよりも小さい場合、古典的なバンディットポリシーよりも後悔度が低い。
論文 参考訳(メタデータ) (2020-06-15T19:24:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。