Adapting Off-the-Shelf Source Segmenter for Target Medical Image
Segmentation
- URL: http://arxiv.org/abs/2106.12497v1
- Date: Wed, 23 Jun 2021 16:16:55 GMT
- Title: Adapting Off-the-Shelf Source Segmenter for Target Medical Image
Segmentation
- Authors: Xiaofeng Liu, Fangxu Xing, Chao Yang, Georges El Fakhri, Jonghye Woo
- Abstract summary: Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled and unseen target domain.
Access to the source domain data at the adaptation stage is often limited, due to data storage or privacy issues.
We propose to adapt an off-the-shelf" segmentation model pre-trained in the source domain to the target domain.
- Score: 12.703234995718372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from
a labeled source domain to an unlabeled and unseen target domain, which is
usually trained on data from both domains. Access to the source domain data at
the adaptation stage, however, is often limited, due to data storage or privacy
issues. To alleviate this, in this work, we target source free UDA for
segmentation, and propose to adapt an ``off-the-shelf" segmentation model
pre-trained in the source domain to the target domain, with an adaptive
batch-wise normalization statistics adaptation framework. Specifically, the
domain-specific low-order batch statistics, i.e., mean and variance, are
gradually adapted with an exponential momentum decay scheme, while the
consistency of domain shareable high-order batch statistics, i.e., scaling and
shifting parameters, is explicitly enforced by our optimization objective. The
transferability of each channel is adaptively measured first from which to
balance the contribution of each channel. Moreover, the proposed source free
UDA framework is orthogonal to unsupervised learning methods, e.g.,
self-entropy minimization, which can thus be simply added on top of our
framework. Extensive experiments on the BraTS 2018 database show that our
source free UDA framework outperformed existing source-relaxed UDA methods for
the cross-subtype UDA segmentation task and yielded comparable results for the
cross-modality UDA segmentation task, compared with a supervised UDA methods
with the source data.
Related papers
- Online Continual Domain Adaptation for Semantic Image Segmentation Using
Internal Representations [28.549418215123936]
We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains.
We evaluate our approach on well established semantic segmentation datasets and demonstrate it compares favorably against state-of-the-art (SOTA) semantic segmentation methods.
arXiv Detail & Related papers (2024-01-02T04:48:49Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
Adapting a deep learning model to a specific target individual is a challenging facial expression recognition task.
This paper introduces a new MSDA method for subject-based domain adaptation in FER.
It efficiently leverages information from multiple source subjects to adapt a deep FER model to a single target individual.
arXiv Detail & Related papers (2023-12-09T18:40:37Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to an unlabeled heterogeneous target domain.
We propose "off-the-shelf (OS)" UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation.
arXiv Detail & Related papers (2022-09-16T13:13:50Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations [35.586031601299034]
Unsupervised BatchNorm Adaptation (UBNA) adapts a given pre-trained model to an unseen target domain.
We partially adapt the normalization layer statistics to the target domain using an exponentially decaying momentum factor.
Compared to standard UDA approaches we report a trade-off between performance and usage of source domain representations.
arXiv Detail & Related papers (2020-11-17T08:37:40Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.