論文の概要: Multi-Class Classification of Blood Cells -- End to End Computer Vision
based diagnosis case study
- arxiv url: http://arxiv.org/abs/2106.12548v1
- Date: Wed, 23 Jun 2021 17:18:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 15:36:21.536457
- Title: Multi-Class Classification of Blood Cells -- End to End Computer Vision
based diagnosis case study
- Title(参考訳): 血液細胞の多種分類 --エンドツーエンドコンピュータビジョンに基づく診断ケーススタディ-
- Authors: Sai Sukruth Bezugam
- Abstract要約: 我々は,外輪郭,色の形態的特徴から,白血球分類の問題に取り組む。
我々は、最小時間複雑さと低リソース要求でロバストなアルゴリズムを特定するために、多くのアルゴリズムを探求したい。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The diagnosis of blood-based diseases often involves identifying and
characterizing patient blood samples. Automated methods to detect and classify
blood cell subtypes have important medical applications. Automated medical
image processing and analysis offers a powerful tool for medical diagnosis. In
this work we tackle the problem of white blood cell classification based on the
morphological characteristics of their outer contour, color. The work we would
explore a set of preprocessing and segmentation (Color-based segmentation,
Morphological processing, contouring) algorithms along with a set of features
extraction methods (Corner detection algorithms and Histogram of
Gradients(HOG)), dimensionality reduction algorithms (Principal Component
Analysis(PCA)) that are able to recognize and classify through various
Unsupervised(k-nearest neighbors) and Supervised (Support Vector Machine,
Decision Trees, Linear Discriminant Analysis, Quadratic Discriminant Analysis,
Naive Bayes) algorithms different categories of white blood cells to
Eosinophil, Lymphocyte, Monocyte, and Neutrophil. We even take a step forwards
to explore various Deep Convolutional Neural network architecture (Sqeezent,
MobilenetV1,MobilenetV2, InceptionNet etc.) without preprocessing/segmentation
and with preprocessing. We would like to explore many algorithms to identify
the robust algorithm with least time complexity and low resource requirement.
The outcome of this work can be a cue to selection of algorithms as per
requirement for automated blood cell classification.
- Abstract(参考訳): 血液ベースの疾患の診断は、しばしば患者の血液サンプルを特定して特徴付ける。
血液細胞サブタイプの検出と分類の自動化は、重要な医学的応用である。
医療画像の自動処理と分析は、医療診断に強力なツールを提供する。
本研究では, 白血球の外輪郭, 色の形態的特徴に基づいて, 白血球分類の問題に取り組む。
The work we would explore a set of preprocessing and segmentation (Color-based segmentation, Morphological processing, contouring) algorithms along with a set of features extraction methods (Corner detection algorithms and Histogram of Gradients(HOG)), dimensionality reduction algorithms (Principal Component Analysis(PCA)) that are able to recognize and classify through various Unsupervised(k-nearest neighbors) and Supervised (Support Vector Machine, Decision Trees, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Naive Bayes) algorithms different categories of white blood cells to Eosinophil, Lymphocyte, Monocyte, and Neutrophil.
さまざまなDeep Convolutional Neural Network Architecture(Sqeezent、MobilenetV1、MobilenetV2、InceptionNetなど)の探求も進めています。
前処理/セグメンテーションおよび前処理なしで。
我々は、最小時間複雑さと低リソース要求でロバストなアルゴリズムを特定するために、多くのアルゴリズムを探求したい。
この研究の結果は、自動的な血液細胞分類に必要なアルゴリズムの選択の手がかりとなる可能性がある。
関連論文リスト
- Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - Unsupervised Cross-Domain Feature Extraction for Single Blood Cell Image
Classification [37.90158669637884]
AutoencoderはR-CNNアーキテクチャをベースにしており、関連する白血球にフォーカスし、画像のアーティファクトを除去することができる。
本研究では,データセットの1つのみで訓練されたオートエンコーダによって抽出されたリッチな特徴により,ランダムな森林分類器は未知のデータセットに対して良好に実行可能であることを示す。
以上の結果から,より複雑な診断・予後タスクにこの教師なしアプローチを適用すれば,高価な専門家ラベルを未確認データに加える必要がなくなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-07-01T15:44:42Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
我々は、顕微鏡的末梢血細胞画像データセットに基づいて、27の人気の深層畳み込みニューラルネットワークアーキテクチャをベンチマークした。
血液細胞分類のためのImageNetデータセットに事前トレーニングされた最先端画像分類モデルを微調整する。
論文 参考訳(メタデータ) (2021-10-18T17:56:07Z) - An Interpretable Algorithm for Uveal Melanoma Subtyping from Whole Slide
Cytology Images [3.33281597371121]
細針吸引生検のデジタル画像を用いたぶどう膜黒色腫の自動診断システムについて述べる。
提案手法は,多数の代表スライドで定義される2次元多様体の点として,候補画像の自動区切りセルを埋め込む。
円歪した2次元多様体の分割に対して規則に基づくスライドレベル分類アルゴリズムを訓練する。
論文 参考訳(メタデータ) (2021-08-13T13:55:08Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Sickle-cell disease diagnosis support selecting the most appropriate
machinelearning method: Towards a general and interpretable approach for
cellmorphology analysis from microscopy images [0.0]
本稿では,最先端技術に基づく分類手法と特徴の選択手法を提案する。
当科では,他の研究例に応用できる病原体疾患のサンプルを用いて検討した。
論文 参考訳(メタデータ) (2020-10-09T11:46:38Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。