論文の概要: Deep CNNs for Peripheral Blood Cell Classification
- arxiv url: http://arxiv.org/abs/2110.09508v1
- Date: Mon, 18 Oct 2021 17:56:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 17:15:05.124501
- Title: Deep CNNs for Peripheral Blood Cell Classification
- Title(参考訳): 末梢血細胞分類のための深部CNN
- Authors: Ekta Gavas and Kaustubh Olpadkar
- Abstract要約: 我々は、顕微鏡的末梢血細胞画像データセットに基づいて、27の人気の深層畳み込みニューラルネットワークアーキテクチャをベンチマークした。
血液細胞分類のためのImageNetデータセットに事前トレーニングされた最先端画像分類モデルを微調整する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning techniques to the medical domain is
especially challenging due to the required level of precision and the
incurrence of huge risks of minute errors. Employing these techniques to a more
complex subdomain of hematological diagnosis seems quite promising, with
automatic identification of blood cell types, which can help in detection of
hematologic disorders. In this paper, we benchmark 27 popular deep
convolutional neural network architectures on the microscopic peripheral blood
cell images dataset. The dataset is publicly available, with large number of
normal peripheral blood cells acquired using the CellaVision DM96 analyzer and
identified by expert pathologists into eight different cell types. We fine-tune
the state-of-the-art image classification models pre-trained on the ImageNet
dataset for blood cell classification. We exploit data augmentation techniques
during training to avoid overfitting and achieve generalization. An ensemble of
the top performing models obtains significant improvements over past published
works, achieving the state-of-the-art results with a classification accuracy of
99.51%. Our work provides empirical baselines and benchmarks on standard
deep-learning architectures for microscopic peripheral blood cell recognition
task.
- Abstract(参考訳): 医療領域への機械学習技術の応用は、精度の必要なレベルと、微小エラーによる大きなリスクの発生のため、特に困難である。
これらのテクニックを血液学的診断のより複雑なサブドメインに応用することは、血液型を自動的に同定することで、血液学的疾患の検出に役立てることができる。
本稿では、顕微鏡下末梢血球画像データセットを用いた27種類の高頻度深層畳み込みニューラルネットワークアーキテクチャをベンチマークする。
このデータセットは公開されており、CellaVision DM96アナライザを用いて取得され、専門家の病理学者によって8種類の細胞タイプに識別される多くの正常末梢血細胞がある。
血液細胞分類のためのImageNetデータセットに事前トレーニングされた最先端画像分類モデルを微調整する。
学習中のデータ拡張手法を活用し,過剰フィッティングを回避し,一般化を実現する。
トップパフォーマンスモデルのアンサンブルは、過去の出版作品よりも大幅に改善され、99.51%の分類精度で最先端の結果が得られる。
本研究は、顕微鏡的末梢血球認識タスクのための標準ディープラーニングアーキテクチャに関する経験的ベースラインとベンチマークを提供する。
関連論文リスト
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
この研究では、MaxVit、EfficientVit、EfficientNet、EfficientNetV2、MobileNetV3といった最先端アーキテクチャを使用して、迅速かつ正確な結果を得る。
本手法は,従来の手法の速度と精度の懸念に対処するだけでなく,血液学的解析における革新的な深層学習モデルの適用性についても検討する。
論文 参考訳(メタデータ) (2024-06-30T16:49:29Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Classification of White Blood Cells Using Machine and Deep Learning
Models: A Systematic Review [8.452349885923507]
機械学習(ML)とディープラーニング(DL)モデルは、医療画像の分析を大幅に改善するために採用されている。
モデル予測と分類は、様々ながんや腫瘍の診断を支援する。
本総説では,白細胞分類のための医用画像解析の領域内で適用された最新の技術について,詳細な分析を行った。
論文 参考訳(メタデータ) (2023-08-11T06:32:25Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Analysis of Vision-based Abnormal Red Blood Cell Classification [1.6050172226234583]
赤血球(RBC)の異常の同定は、貧血から肝疾患まで幅広い医学的疾患を診断する鍵となる。
本稿では,機械学習の利点を利用したセル異常検出のキャパシティ向上と標準化を目的とした自動化プロセスを提案する。
論文 参考訳(メタデータ) (2021-06-01T10:52:41Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
本稿では,深層畳み込みニューラルネットワーク(cnns)を用いた顕微鏡細胞画像からの全検出タスクを自動化した。
ネットワークのより優れた一般化を達成するために、様々なデータ拡張と前処理が組み込まれている。
提案する重み付きアンサンブルモデルでは, アンサンブル候補のカッパ値を重みとして, 重み付きF1スコア88.6 %, バランス付き精度86.2 %, 予備試験セットのAUC0.941を出力した。
論文 参考訳(メタデータ) (2021-05-09T18:58:48Z) - Sickle-cell disease diagnosis support selecting the most appropriate
machinelearning method: Towards a general and interpretable approach for
cellmorphology analysis from microscopy images [0.0]
本稿では,最先端技術に基づく分類手法と特徴の選択手法を提案する。
当科では,他の研究例に応用できる病原体疾患のサンプルを用いて検討した。
論文 参考訳(メタデータ) (2020-10-09T11:46:38Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。