Fine-Grained Data Selection for Improved Energy Efficiency of Federated
Edge Learning
- URL: http://arxiv.org/abs/2106.12561v1
- Date: Sun, 20 Jun 2021 10:51:32 GMT
- Title: Fine-Grained Data Selection for Improved Energy Efficiency of Federated
Edge Learning
- Authors: Abdullatif Albaseer, Mohamed Abdallah, Ala Al-Fuqaha, Aiman Erbad
- Abstract summary: In Federated edge learning (FEEL), energy-constrained devices at the network edge consume significant energy when training and uploading their local machine learning models.
This work proposes novel solutions for energy-efficient FEEL by jointly considering local training data, available computation, and communications resources.
- Score: 2.924868086534434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Federated edge learning (FEEL), energy-constrained devices at the network
edge consume significant energy when training and uploading their local machine
learning models, leading to a decrease in their lifetime. This work proposes
novel solutions for energy-efficient FEEL by jointly considering local training
data, available computation, and communications resources, and deadline
constraints of FEEL rounds to reduce energy consumption. This paper considers a
system model where the edge server is equipped with multiple antennas employing
beamforming techniques to communicate with the local users through orthogonal
channels. Specifically, we consider a problem that aims to find the optimal
user's resources, including the fine-grained selection of relevant training
samples, bandwidth, transmission power, beamforming weights, and processing
speed with the goal of minimizing the total energy consumption given a deadline
constraint on the communication rounds of FEEL. Then, we devise tractable
solutions by first proposing a novel fine-grained training algorithm that
excludes less relevant training samples and effectively chooses only the
samples that improve the model's performance. After that, we derive closed-form
solutions, followed by a Golden-Section-based iterative algorithm to find the
optimal computation and communication resources that minimize energy
consumption. Experiments using MNIST and CIFAR-10 datasets demonstrate that our
proposed algorithms considerably outperform the state-of-the-art solutions as
energy consumption decreases by 79% for MNIST and 73% for CIFAR-10 datasets.
Related papers
- Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Adaptive Decentralized Federated Learning in Energy and Latency Constrained Wireless Networks [4.03161352925235]
In Federated Learning (FL), with parameter aggregated by a central node, the communication overhead is a substantial concern.
Recent studies have introduced Decentralized Federated Learning (DFL) as a viable alternative.
We formulate a problem that minimizes the loss function of DFL while considering energy and latency constraints.
arXiv Detail & Related papers (2024-03-29T09:17:40Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Energy-Aware Edge Association for Cluster-based Personalized Federated
Learning [2.3262774900834606]
Federated Learning over wireless network enables data-conscious services by leveraging ubiquitous intelligence at network edge for privacy-preserving model training.
We propose clustered federated learning to group user devices with similar preference and provide each cluster with a personalized model.
We formulate an accuracy-cost trade-off optimization problem by jointly considering model accuracy, communication resource allocation and energy consumption.
arXiv Detail & Related papers (2022-02-06T07:58:41Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated edge learning (FEEL) is a promising distributed learning technique for next-generation wireless networks.
FEEL might significantly shorten energy-constrained participating devices' lifetime due to the power consumed during the model training round.
This paper proposes a novel approach that endeavors to minimize computation and communication energy consumption during FEEL rounds.
arXiv Detail & Related papers (2021-03-30T13:34:40Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
5G beyond is an end-edge-cloud orchestrated network that can exploit heterogeneous capabilities of the end devices, edge servers, and the cloud.
In multi user wireless networks, diverse application requirements and the possibility of various radio access modes for communication among devices make it challenging to design an optimal computation offloading scheme.
Deep Reinforcement Learning (DRL) is an emerging technique to address such an issue with limited and less accurate network information.
arXiv Detail & Related papers (2020-11-17T05:51:03Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
Edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge.
This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model.
Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
arXiv Detail & Related papers (2020-07-21T07:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.