Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach
- URL: http://arxiv.org/abs/2405.12046v2
- Date: Wed, 09 Oct 2024 09:11:02 GMT
- Title: Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach
- Authors: Chung-Hsuan Hu, Zheng Chen, Erik G. Larsson,
- Abstract summary: We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
- Score: 34.00679567444125
- License:
- Abstract: Federated learning (FL) has received significant attention in recent years for its advantages in efficient training of machine learning models across distributed clients without disclosing user-sensitive data. Specifically, in federated edge learning (FEEL) systems, the time-varying nature of wireless channels introduces inevitable system dynamics in the communication process, thereby affecting training latency and energy consumption. In this work, we further consider a streaming data scenario where new training data samples are randomly generated over time at edge devices. Our goal is to develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints. To achieve this, we formulate a stochastic network optimization problem and use the Lyapunov drift-plus-penalty framework to obtain a dynamic resource management design. Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round. We provide convergence analysis for the considered setting with heterogeneous data and time-varying objective functions, which supports the rationale behind our proposed scheduling design. The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
Related papers
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
Federated learning (FL) enables edge devices to collaboratively train a machine learning model without sharing their raw data.
However, deploying FL over mobile edge networks with constrained resources such as power, bandwidth, and suffers from high training latency and low model accuracy.
This paper investigates the optimal client scheduling and resource allocation for FL over mobile edge networks under resource constraints and uncertainty.
arXiv Detail & Related papers (2024-09-29T01:56:45Z) - Context-Aware Orchestration of Energy-Efficient Gossip Learning Schemes [8.382766344930157]
We present a distributed training approach based on the combination of Gossip Learning with adaptive optimization of the learning process.
We propose a data-driven approach to OGL management that relies on optimizing in real-time for each node.
Results suggest that our approach is highly efficient and effective in a broad spectrum of network scenarios.
arXiv Detail & Related papers (2024-04-18T09:17:46Z) - Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
In some applications, edge learning is experiencing a shift in focusing from conventional learning from scratch to new two-stage learning.
This paper considers the problem of joint communication and computation resource management in a two-stage edge learning system.
It is shown that the proposed joint resource management over the pre-training and fine-tuning stages well balances the system performance trade-off.
arXiv Detail & Related papers (2024-04-01T00:21:11Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Dynamic Scheduling for Over-the-Air Federated Edge Learning with Energy
Constraints [44.311278843238675]
We consider an over-the-air FEEL system with analog gradient aggregation.
We propose an energy-aware dynamic device scheduling algorithm to optimize the training performance.
Under a highly unbalanced local data distribution, the proposed algorithm can increase the accuracy by 4.9%.
arXiv Detail & Related papers (2021-05-31T08:55:02Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.