Long short-term relevance learning
- URL: http://arxiv.org/abs/2106.12694v1
- Date: Mon, 21 Jun 2021 09:07:17 GMT
- Title: Long short-term relevance learning
- Authors: Bram van de Weg, Lars Greve, Bojana Rosic
- Abstract summary: An efficient sparse Bayesian training algorithm is introduced to the network architecture.
The proposed scheme automatically determines relevant neural connections and adapts accordingly.
We show that the self-regulating framework does not require prior knowledge of a suitable network architecture and size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To incorporate prior knowledge as well as measurement uncertainties in the
traditional long short term memory (LSTM) neural networks, an efficient sparse
Bayesian training algorithm is introduced to the network architecture. The
proposed scheme automatically determines relevant neural connections and adapts
accordingly, in contrast to the classical LSTM solution. Due to its
flexibility, the new LSTM scheme is less prone to overfitting, and hence can
approximate time dependent solutions by use of a smaller data set. On a
structural nonlinear finite element application we show that the
self-regulating framework does not require prior knowledge of a suitable
network architecture and size, while ensuring satisfying accuracy at reasonable
computational cost.
Related papers
- Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
We develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data.
As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps.
arXiv Detail & Related papers (2023-10-23T19:03:37Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow learning Networks (FSNet) is a holistic framework for online time-series forecasting.
FSNet balances fast adaptation to recent changes and retrieving similar old knowledge.
Our code will be made publicly available.
arXiv Detail & Related papers (2022-02-23T18:23:07Z) - An optimised deep spiking neural network architecture without gradients [7.183775638408429]
We present an end-to-end trainable modular event-driven neural architecture that uses local synaptic and threshold adaptation rules.
The architecture represents a highly abstracted model of existing Spiking Neural Network (SNN) architectures.
arXiv Detail & Related papers (2021-09-27T05:59:12Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
We propose a new LSTM variant called embedded convolutional LSTM (E NeuralTM)
In ETM a group of different 1D convolutions is embedded into the LSTM structure. Through this, the temporal information is preserved between and within windows.
We show the superiority of our proposed ETM approach over the state-of-the-art approaches on several widely used benchmark data sets for RUL Estimation.
arXiv Detail & Related papers (2020-08-10T08:34:20Z) - SRDCNN: Strongly Regularized Deep Convolution Neural Network
Architecture for Time-series Sensor Signal Classification Tasks [4.950427992960756]
We present SRDCNN: Strongly Regularized Deep Convolution Neural Network (DCNN) based deep architecture to perform time series classification tasks.
The novelty of the proposed approach is that the network weights are regularized by both L1 and L2 norm penalties.
arXiv Detail & Related papers (2020-07-14T08:42:39Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.