Machine Learning-based Orchestration of Containers: A Taxonomy and
Future Directions
- URL: http://arxiv.org/abs/2106.12739v1
- Date: Thu, 24 Jun 2021 02:55:35 GMT
- Title: Machine Learning-based Orchestration of Containers: A Taxonomy and
Future Directions
- Authors: Zhiheng Zhong, Minxian Xu, Maria Alejandra Rodriguez, Chengzhong Xu,
and Rajkumar Buyya
- Abstract summary: Existing mainstream cloud service providers have prevalently adopted container technologies in their distributed system infrastructures for automated application management.
To handle the automation of deployment, maintenance, autoscaling, and networking of containerized applications, container orchestration is proposed as an essential research problem.
In this paper, we present a comprehensive review of existing machine learning-based container orchestration approaches.
- Score: 25.763692543206773
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Containerization is a lightweight application virtualization technology,
providing high environmental consistency, operating system distribution
portability, and resource isolation. Existing mainstream cloud service
providers have prevalently adopted container technologies in their distributed
system infrastructures for automated application management. To handle the
automation of deployment, maintenance, autoscaling, and networking of
containerized applications, container orchestration is proposed as an essential
research problem. However, the highly dynamic and diverse feature of cloud
workloads and environments considerably raises the complexity of orchestration
mechanisms. Machine learning algorithms are accordingly employed by container
orchestration systems for behavior modelling and prediction of
multi-dimensional performance metrics. Such insights could further improve the
quality of resource provisioning decisions in response to the changing
workloads under complex environments. In this paper, we present a comprehensive
literature review of existing machine learning-based container orchestration
approaches. Detailed taxonomies are proposed to classify the current researches
by their common features. Moreover, the evolution of machine learning-based
container orchestration technologies from the year 2016 to 2021 has been
designed based on objectives and metrics. A comparative analysis of the
reviewed techniques is conducted according to the proposed taxonomies, with
emphasis on their key characteristics. Finally, various open research
challenges and potential future directions are highlighted.
Related papers
- A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments [1.2753215270475886]
This paper presents a theoretical framework for an AI-driven data quality monitoring system designed to address the challenges of maintaining data quality in high-volume environments.
We examine the limitations of traditional methods in managing the scale, velocity, and variety of big data and propose a conceptual approach leveraging advanced machine learning techniques.
Key components include an intelligent data ingestion layer, adaptive preprocessing mechanisms, context-aware feature extraction, and AI-based quality assessment modules.
arXiv Detail & Related papers (2024-10-11T07:06:36Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
Generative AI, Computer Vision, and Natural Language Processing have led to an increased integration of AI models into various products.
This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems.
arXiv Detail & Related papers (2023-11-22T18:46:05Z) - Hybrid Algorithm Selection and Hyperparameter Tuning on Distributed
Machine Learning Resources: A Hierarchical Agent-based Approach [0.0]
This paper proposes a fully automatic and collaborative agent-based mechanism for selecting distributedly organized machine learning algorithms.
Our solution is totally correct and exhibits linear time and space complexity in relation to the size of available resources.
arXiv Detail & Related papers (2023-09-12T21:07:23Z) - Towards a Dynamic Composability Approach for using Heterogeneous Systems
in Remote Sensing [0.0]
We present a novel approach for using composable systems in the intersection between scientific computing, artificial intelligence (AI), and remote sensing domain.
We describe the architecture of a first working example of a composable infrastructure that federates Expanse, an NSF-funded supercomputer, with Nautilus, a geo-distributed cluster.
arXiv Detail & Related papers (2022-11-13T14:48:00Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
The paper addresses a modular approach, integrated into the ALOHA tool flow, to support the data preprocessing and transformation pipeline.
To demonstrate the effectiveness of the approach, we present some experimental results related to a keyword spotting use case.
arXiv Detail & Related papers (2021-02-02T06:48:51Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.