論文の概要: InFlow: Robust outlier detection utilizing Normalizing Flows
- arxiv url: http://arxiv.org/abs/2106.12894v1
- Date: Thu, 10 Jun 2021 08:42:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-27 10:48:50.302957
- Title: InFlow: Robust outlier detection utilizing Normalizing Flows
- Title(参考訳): InFlow:正規化フローを用いたロバスト外乱検出
- Authors: Nishant Kumar, Pia Hanfeld, Michael Hecht, Michael Bussmann, Stefan
Gumhold and Nico Hoffmannn
- Abstract要約: 正規化フローは、敵攻撃を含むアウトリーチを確実に検出できることを示す。
本手法では, トレーニングに外部データを必要としないため, OOD検出の効率性を示す。
- 参考スコア(独自算出の注目度): 7.309919829856283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Normalizing flows are prominent deep generative models that provide tractable
probability distributions and efficient density estimation. However, they are
well known to fail while detecting Out-of-Distribution (OOD) inputs as they
directly encode the local features of the input representations in their latent
space. In this paper, we solve this overconfidence issue of normalizing flows
by demonstrating that flows, if extended by an attention mechanism, can
reliably detect outliers including adversarial attacks. Our approach does not
require outlier data for training and we showcase the efficiency of our method
for OOD detection by reporting state-of-the-art performance in diverse
experimental settings. Code available at
https://github.com/ComputationalRadiationPhysics/InFlow .
- Abstract(参考訳): 正規化フローは、移動可能な確率分布と効率的な密度推定を提供する顕著な深い生成モデルである。
しかし、入力表現の局所的特徴を直接エンコードし、out-of-Distribution (OOD)インプットを検出しながら失敗することはよく知られている。
本稿では,注意機構によって拡張された場合,逆攻撃を含む外れ値を確実に検出できることを示すことにより,流れの正規化という過信問題を解く。
本手法は, トレーニングに異常データを必要としないため, 様々な実験環境での最先端性能の報告によるood検出の効率を示す。
コードはhttps://github.com/computationalradiationphysics/inflowで利用可能。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - Feature Density Estimation for Out-of-Distribution Detection via Normalizing Flows [7.91363551513361]
アウト・オブ・ディストリビューション(OOD)検出は,オープンワールド環境での学習システムの安全な配置において重要な課題である。
我々は、OODサンプル選択における研究者バイアスを回避するため、OODデータへの露出を必要としない、完全に教師なしのアプローチを提案する。
これは、任意の事前訓練されたモデルに適用可能なポストホック法であり、密度閾値による分布外検出を行うために、軽量な補助正規化フローモデルを訓練する。
論文 参考訳(メタデータ) (2024-02-09T16:51:01Z) - Robustness to Spurious Correlations Improves Semantic
Out-of-Distribution Detection [24.821151013905865]
画像入力のアウト・オブ・ディストリビューション(OOD)検出のための有望なアプローチとして,予測モデルの出力や特徴表現を利用する手法が登場した。
SN-OOD検出の故障について説明し、その対策としてニュアンス対応のOOD検出を提案する。
論文 参考訳(メタデータ) (2023-02-08T15:28:33Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
異常検出タスクはAIの安全性において重要な役割を担っている。
ディープニューラルネットワーク分類器は通常、アウト・オブ・ディストリビューション(OOD)の入力を、信頼性の高いイン・ディストリビューション・クラスに誤って分類する傾向がある。
我々は,OOD検出タスクにおいて実用的かつ理論的に有効な代替確率論的パラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-26T15:59:55Z) - Positive Difference Distribution for Image Outlier Detection using
Normalizing Flows and Contrastive Data [2.9005223064604078]
例えば、標準的なログライクリーフトレーニングによる正規化フローは、外れ値スコアとして不十分である。
本稿では,外乱検出のための非ラベル付き補助データセットと確率的外乱スコアを提案する。
これは、分布内と対照的な特徴密度の間の正規化正の差を学ぶことと等価であることを示す。
論文 参考訳(メタデータ) (2022-08-30T07:00:46Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - FastFlow: Unsupervised Anomaly Detection and Localization via 2D
Normalizing Flows [18.062328700407726]
本稿では,ResNet や Vision Transformer など,任意の機能抽出用プラグインモジュールとしてFastFlowを提案する。
トレーニングフェーズでは、FastFlowは入力された視覚的特徴を抽出可能な分布に変換することを学び、推論フェーズにおける異常を認識する可能性を得る。
提案手法は推論効率の高い異常検出において99.4%のAUCを実現する。
論文 参考訳(メタデータ) (2021-11-15T11:15:02Z) - Efficient remedies for outlier detection with variational autoencoders [8.80692072928023]
深層生成モデルによって計算される類似度は、ラベルなしデータによる外れ値検出の候補メトリックである。
理論的に定位された補正は、VAE推定値による鍵バイアスを容易に改善することを示す。
また,VAEのアンサンブル上で計算される確率の分散により,ロバストな外乱検出が可能となることを示す。
論文 参考訳(メタデータ) (2021-08-19T16:00:58Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Why Normalizing Flows Fail to Detect Out-of-Distribution Data [51.552870594221865]
正規化フローは、イン・オブ・ディストリビューションデータとアウト・オブ・ディストリビューションデータの区別に失敗する。
フローは局所的な画素相関と画像からラテンス空間への変換を学習する。
フロー結合層のアーキテクチャを変更することで、ターゲットデータのセマンティック構造を学ぶためのフローに偏りがあることが示される。
論文 参考訳(メタデータ) (2020-06-15T17:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。