論文の概要: Understanding Uncertainty in Bayesian Deep Learning
- arxiv url: http://arxiv.org/abs/2106.13055v1
- Date: Fri, 21 May 2021 19:22:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-27 13:06:56.116369
- Title: Understanding Uncertainty in Bayesian Deep Learning
- Title(参考訳): ベイズ深層学習における不確かさの理解
- Authors: Cooper Lorsung
- Abstract要約: 我々は,NLMの従来のトレーニング手順が,データスカース領域における不確実性を大幅に過小評価できることを示した。
本稿では,有用な予測の不確実性を捉えるとともに,ドメイン知識の組み入れを可能にする新しいトレーニング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Linear Models (NLM) are deep Bayesian models that produce predictive
uncertainty by learning features from the data and then performing Bayesian
linear regression over these features. Despite their popularity, few works have
focused on formally evaluating the predictive uncertainties of these models.
Furthermore, existing works point out the difficulties of encoding domain
knowledge in models like NLMs, making them unsuitable for applications where
interpretability is required. In this work, we show that traditional training
procedures for NLMs can drastically underestimate uncertainty in data-scarce
regions. We identify the underlying reasons for this behavior and propose a
novel training method that can both capture useful predictive uncertainties as
well as allow for incorporation of domain knowledge.
- Abstract(参考訳): ニューラルリニアモデル(nlm)は、データから特徴を学習し、それらの特徴に対してベイズ線形回帰を行うことで予測の不確実性を生み出す深いベイズモデルである。
彼らの人気にもかかわらず、これらのモデルの予測の不確かさを正式に評価することに焦点を絞った作品はほとんどない。
さらに、既存の研究は、NLMのようなモデルでドメイン知識を符号化する難しさを指摘しており、解釈可能性が必要なアプリケーションには適さない。
本研究では,NLMの従来のトレーニング手順が,データスカース領域における不確実性を大幅に過小評価できることを示す。
我々は,この行動の根底にある理由を特定し,有用な予測の不確実性を捉えるとともに,ドメイン知識の組み入れを可能にする新しいトレーニング手法を提案する。
関連論文リスト
- An Ambiguity Measure for Recognizing the Unknowns in Deep Learning [0.0]
深層ニューラルネットワークの学習範囲から, 深部ニューラルネットワークの理解について検討する。
任意のモデルに対する入力のあいまいさを定量化する尺度を提案する。
論文 参考訳(メタデータ) (2023-12-11T02:57:12Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
本研究では,不確実性定量化能力の優れた事前学習モデルを構築するための新しいベイズメタモデルを提案する。
提案手法は追加のトレーニングデータを必要としないため,不確かさの定量化に十分な柔軟性がある。
提案するメタモデルアプローチの柔軟性と,これらのアプリケーションに対する優れた経験的性能を実証する。
論文 参考訳(メタデータ) (2022-12-14T17:34:11Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
本研究では,凍結モデルに対するベイズIDマッピングを学習し,不確実性の推定を可能にするBayesCapを提案する。
BayesCapは、元のデータセットのごく一部でトレーニングできる、メモリ効率のよいメソッドである。
本稿では,多種多様なアーキテクチャを用いた多種多様なタスクに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-07-14T12:50:09Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
Multi-Headed Auxiliary Networks [23.100727871427367]
本稿では,従来のニューラル線形モデルのトレーニング手順が,アウト・オブ・ディストリビューション・インプットに対する不確実性を大幅に過小評価していることを示す。
下流タスクに有用な予測不確実性を捉える新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-21T02:46:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。