論文の概要: Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification
- arxiv url: http://arxiv.org/abs/2304.06349v1
- Date: Thu, 13 Apr 2023 08:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 15:13:03.263910
- Title: Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification
- Title(参考訳): ニューラル状態空間モデル:不確実性量子化の実証評価
- Authors: Marco Forgione and Dario Piga
- Abstract要約: 本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective quantification of uncertainty is an essential and still missing
step towards a greater adoption of deep-learning approaches in different
applications, including mission-critical ones. In particular, investigations on
the predictive uncertainty of deep-learning models describing non-linear
dynamical systems are very limited to date. This paper is aimed at filling this
gap and presents preliminary results on uncertainty quantification for system
identification with neural state-space models. We frame the learning problem in
a Bayesian probabilistic setting and obtain posterior distributions for the
neural network's weights and outputs through approximate inference techniques.
Based on the posterior, we construct credible intervals on the outputs and
define a surprise index which can effectively diagnose usage of the model in a
potentially dangerous out-of-distribution regime, where predictions cannot be
trusted.
- Abstract(参考訳): 不確実性の効果的な定量化は、ミッションクリティカルなものを含むさまざまなアプリケーションでディープラーニングアプローチを採用するための、不可欠かつ依然として欠落しているステップである。
特に、非線形力学系を記述するディープラーニングモデルの予測不確実性に関する調査は、現在まで非常に限られている。
本稿では,このギャップを埋めることを目的として,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化の予備的結果を示す。
ベイズ確率設定で学習問題をフレーム化し、近似推論手法を用いてニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,予測を信頼できない潜在的に危険なアウト・オブ・ディストリビューションシステムにおいて,モデルの使用を効果的に診断できるサプライズ指標を定義する。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
エビデンシャル・ディープ・ラーニング(Evidential Deep Learning)は、パラメトリック・ディープ・ラーニングを高次分布に拡張する手法である。
本研究では,明らかなニューラルネットワークから得られる不確実性とアンサンブルから得られる不確実性を比較する。
本研究では,従来の手法に匹敵する予測精度を実現するとともに,両方の不確実性源をしっかりと定量化しながら,明らかな深層学習モデルを示す。
論文 参考訳(メタデータ) (2023-09-22T23:04:51Z) - Looking at the posterior: accuracy and uncertainty of neural-network
predictions [0.0]
予測精度はてんかんとアレタリック不確実性の両方に依存している。
本稿では,共通不確実性に基づく手法よりも優れた新たな獲得関数を提案する。
論文 参考訳(メタデータ) (2022-11-26T16:13:32Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Multivariate Deep Evidential Regression [77.34726150561087]
不確実性を認識するニューラルネットワークによる新しいアプローチは、従来の決定論的手法よりも有望である。
本稿では,レグレッションベースニューラルネットワークからアレータ性およびてんかん性不確かさを抽出する手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T12:20:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
トレーニングデータの量が少ない場合,最先端のBNNとDeep Ensembleモデルの不確実性推定能力は著しく低下することを示す。
サンプル効率の高い非パラメトリックkNN手法の確率的一般化を提案する。
我々のアプローチは、深いkNNがその予測において根底にある不確かさを正確に定量化することを可能にする。
論文 参考訳(メタデータ) (2020-07-18T21:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。