Training-efficient density quantum machine learning
- URL: http://arxiv.org/abs/2405.20237v1
- Date: Thu, 30 May 2024 16:40:28 GMT
- Title: Training-efficient density quantum machine learning
- Authors: Brian Coyle, El Amine Cherrat, Nishant Jain, Natansh Mathur, Snehal Raj, Skander Kazdaghli, Iordanis Kerenidis,
- Abstract summary: Quantum machine learning requires powerful, flexible and efficiently trainable models.
We present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries.
- Score: 2.918930150557355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning requires powerful, flexible and efficiently trainable models to be successful in solving challenging problems. In this work, we present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries. These models generalise quantum neural networks using parameterised quantum circuits, and allow a trade-off between expressibility and efficient trainability, particularly on quantum hardware. We demonstrate the flexibility of the formalism by applying it to two recently proposed model families. The first are commuting-block quantum neural networks (QNNs) which are efficiently trainable but may be limited in expressibility. The second are orthogonal (Hamming-weight preserving) quantum neural networks which provide well-defined and interpretable transformations on data but are challenging to train at scale on quantum devices. Density commuting QNNs improve capacity with minimal gradient complexity overhead, and density orthogonal neural networks admit a quadratic-to-constant gradient query advantage with minimal to no performance loss. We conduct numerical experiments on synthetic translationally invariant data and MNIST image data with hyperparameter optimisation to support our findings. Finally, we discuss the connection to post-variational quantum neural networks, measurement-based quantum machine learning and the dropout mechanism.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
We propose a new quantum neural network model for quantum neural computing.
Our model circumvents the problem that the state-space size grows exponentially with the number of neurons.
We benchmark our model for handwritten digit recognition and other nonlinear classification tasks.
arXiv Detail & Related papers (2023-05-15T11:16:47Z) - Quantum HyperNetworks: Training Binary Neural Networks in Quantum
Superposition [16.1356415877484]
We introduce quantum hypernetworks as a mechanism to train binary neural networks on quantum computers.
We show that our approach effectively finds optimal parameters, hyperparameters and architectural choices with high probability on classification problems.
Our unified approach provides an immense scope for other applications in the field of machine learning.
arXiv Detail & Related papers (2023-01-19T20:06:48Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
In this work, we explore binary neural networks, which are lightweight yet powerful models typically intended for resource constrained devices.
We devise a quadratic unconstrained binary optimization formulation for the training problem.
While the problem is intractable, i.e., the cost to estimate the binary weights scales exponentially with network size, we show how the problem can be optimized directly on a quantum annealer.
arXiv Detail & Related papers (2021-07-05T03:20:54Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z) - The power of quantum neural networks [3.327474729829121]
In the near-term, however, the benefits of quantum machine learning are not so clear.
We use tools from information geometry to define a notion of expressibility for quantum and classical models.
We show that quantum neural networks are able to achieve a significantly better effective dimension than comparable classical neural networks.
arXiv Detail & Related papers (2020-10-30T18:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.