Symmetry-preserved cost functions for variational quantum eigensolver
- URL: http://arxiv.org/abs/2411.16915v1
- Date: Mon, 25 Nov 2024 20:33:47 GMT
- Title: Symmetry-preserved cost functions for variational quantum eigensolver
- Authors: Hamzat Akande, Bruno Senjean, Matthieu Saubanere,
- Abstract summary: Hybrid quantum-classical variational algorithms are considered ideal for noisy quantum computers.
We propose encoding symmetry preservation directly into the cost function, enabling more efficient use of Hardware-Efficient Ans"atze.
- Score: 0.0
- License:
- Abstract: Hybrid quantum-classical variational algorithms are considered ideal for noisy quantum computers, as they significantly reduce quantum circuit depth compared to fully quantum methods like quantum phase estimation. This reduction requires a classical variational optimization task. Ideally, circuits are shallow enough to avoid quantum noise, and the cost function is convex but not flat, enabling efficient optimization. However, quantum circuits based on unitary coupled cluster ans\"atze scale quartically with the number of qubits. Hardware-Efficient Ans\"atze (HEA) offer shallower circuits but suffer from optimization issues, including symmetry breaking. We propose encoding symmetry preservation directly into the cost function, enabling more efficient use of HEA. Our variational, iterative algorithm controls circuit depth and optimization challenges.
Related papers
- QAdaPrune: Adaptive Parameter Pruning For Training Variational Quantum Circuits [2.3332157823623403]
emphQAdaPrune is an adaptive parameter pruning algorithm that automatically determines the threshold and then intelligently prunes the redundant and non-performing parameters.
We show that the resulting sparse parameter sets yield quantum circuits that perform comparably to the unpruned quantum circuits.
arXiv Detail & Related papers (2024-08-23T19:57:40Z) - Qubit-efficient quantum combinatorial optimization solver [0.0]
We develop a qubit-efficient algorithm that overcomes the limitation by mapping a candidate bit solution to an entangled wave function of fewer qubits.
This approach could benefit near-term intermediate-scale and future fault-tolerant small-scale quantum devices.
arXiv Detail & Related papers (2024-07-22T11:02:13Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.