論文の概要: Reliable Graph Neural Network Explanations Through Adversarial Training
- arxiv url: http://arxiv.org/abs/2106.13427v1
- Date: Fri, 25 Jun 2021 04:49:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-06-28 13:03:35.627407
- Title: Reliable Graph Neural Network Explanations Through Adversarial Training
- Title(参考訳): 逆学習による信頼グラフニューラルネットワークの説明
- Authors: Donald Loveland, Shusen Liu, Bhavya Kailkhura, Anna Hiszpanski, Yong
Han
- Abstract要約: グラフニューラルネットワーク(GNN)の説明は大半がポストホックイントロスペクションによって進められている。
我々は、GNNの類似した訓練パラダイムを提案し、モデルの説明に対する各影響を分析する。
- 参考スコア(独自算出の注目度): 10.323055385277877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural network (GNN) explanations have largely been facilitated through
post-hoc introspection. While this has been deemed successful, many post-hoc
explanation methods have been shown to fail in capturing a model's learned
representation. Due to this problem, it is worthwhile to consider how one might
train a model so that it is more amenable to post-hoc analysis. Given the
success of adversarial training in the computer vision domain to train models
with more reliable representations, we propose a similar training paradigm for
GNNs and analyze the respective impact on a model's explanations. In instances
without ground truth labels, we also determine how well an explanation method
is utilizing a model's learned representation through a new metric and
demonstrate adversarial training can help better extract domain-relevant
insights in chemistry.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の説明は大半がポストホックイントロスペクションによって進められている。
これは成功と見なされているが、多くのポストホックな説明方法はモデルの学習した表現を捉えるのに失敗することが示されている。
この問題のため、モデルをどのようにトレーニングして、ポストホック解析がより快適になるか検討する価値がある。
コンピュータビジョン領域における、より信頼性の高い表現でモデルを訓練するための逆トレーニングの成功を踏まえ、GNNの同様の訓練パラダイムを提案し、モデルの説明に対するそれぞれの影響を分析する。
基底的真理ラベルのない例では、説明法がモデルの学習した表現を新しいメトリックを通していかにうまく活用しているかを判断し、逆行訓練が化学におけるドメイン関連洞察の抽出に役立つことを示す。
関連論文リスト
- Globally Interpretable Graph Learning via Distribution Matching [12.885580925389352]
我々は、まだ十分に研究されていない重要な質問に答えることを目指している。グラフ学習手順のグローバルな解釈を提供するには、どうすればよいのか?
我々は,この問題を,学習過程を支配する高レベルかつ人間の知能なパターンを蒸留することを目的とした,グローバルな解釈可能なグラフ学習として定式化する。
本稿では,解釈に基づいて学習したモデルの忠実度を評価するために,新しいモデル忠実度尺度を提案する。
論文 参考訳(メタデータ) (2023-06-18T00:50:36Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - MEGAN: Multi-Explanation Graph Attention Network [1.1470070927586016]
マルチエクスラレーショングラフアテンションネットワーク(MEGAN)を提案する。
既存のグラフ説明可能性法とは異なり、ネットワークは複数のチャネルに沿ってノードとエッジの属性の説明を生成することができる。
我々の注意に基づくネットワークは完全に差別化可能であり、説明を指導的な方法で積極的に訓練することができる。
論文 参考訳(メタデータ) (2022-11-23T16:10:13Z) - Causality for Inherently Explainable Transformers: CAT-XPLAIN [16.85887568521622]
我々は、最近提案されたケースワイズ・ポストホック因果説明法を用いて、既存のトランスフォーマーアーキテクチャを本質的に説明可能にする。
我々のモデルは、与えられたインスタンスの入力空間におけるトップ$k$領域の形で、その決定に寄与する説明を提供する。
論文 参考訳(メタデータ) (2022-06-29T18:11:01Z) - Learning to Scaffold: Optimizing Model Explanations for Teaching [74.25464914078826]
我々は3つの自然言語処理とコンピュータビジョンタスクのモデルを訓練する。
筆者らは,本フレームワークで抽出した説明文を学習した学生が,従来の手法よりもはるかに効果的に教師をシミュレートできることを発見した。
論文 参考訳(メタデータ) (2022-04-22T16:43:39Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - A Meta-Learning Approach for Training Explainable Graph Neural Networks [10.11960004698409]
本稿では,GNNの学習時間における説明可能性向上のためのメタラーニングフレームワークを提案する。
我々のフレームワークは、例えばノード分類などの元のタスクを解決するためにモデルを共同で訓練し、下流アルゴリズムで容易に処理可能な出力を提供する。
我々のモデルに依存しないアプローチは、異なるGNNアーキテクチャで生成された説明を改善し、このプロセスを駆動するためにインスタンスベースの説明器を使用することができます。
論文 参考訳(メタデータ) (2021-09-20T11:09:10Z) - Unsupervised Detection of Adversarial Examples with Model Explanations [0.6091702876917279]
本稿では,モデル動作を説明するために開発された手法を用いて,逆例を検出するための簡易かつ効果的な手法を提案する。
MNIST手書きデータセットを用いて評価したところ,本手法は高い信頼度で敵のサンプルを検出することができることがわかった。
論文 参考訳(メタデータ) (2021-07-22T06:54:18Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。