論文の概要: Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance
- arxiv url: http://arxiv.org/abs/2106.13479v1
- Date: Fri, 25 Jun 2021 07:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 12:59:53.626324
- Title: Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance
- Title(参考訳): tts/vcシステムにおけるベクトル量子化潜在空間の利用に関する予備的検討
- Authors: Hieu-Thi Luong and Junichi Yamagishi
- Abstract要約: 本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
- 参考スコア(独自算出の注目度): 55.10864476206503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generally speaking, the main objective when training a neural speech
synthesis system is to synthesize natural and expressive speech from the output
layer of the neural network without much attention given to the hidden layers.
However, by learning useful latent representation, the system can be used for
many more practical scenarios. In this paper, we investigate the use of
quantized vectors to model the latent linguistic embedding and compare it with
the continuous counterpart. By enforcing different policies over the latent
spaces in the training, we are able to obtain a latent linguistic embedding
that takes on different properties while having a similar performance in terms
of quality and speaker similarity. Our experiments show that the voice cloning
system built with vector quantization has only a small degradation in terms of
perceptive evaluations, but has a discrete latent space that is useful for
reducing the representation bit-rate, which is desirable for data transferring,
or limiting the information leaking, which is important for speaker
anonymization and other tasks of that nature.
- Abstract(参考訳): 一般に、ニューラルネットワーク合成システムの訓練の主な目的は、隠れた層にあまり注意を払わずに、ニューラルネットワークの出力層から自然で表現豊かな音声を合成することである。
しかし、有用な潜在表現を学習することで、システムはより実用的なシナリオで使用できる。
本稿では,潜在言語埋め込みのモデル化における量子化ベクトルの利用について検討し,それと比較する。
学習における潜在空間上の異なるポリシーを強制することにより、品質と話者の類似性の観点から同様の性能を保ちながら、異なる特性を生かした潜在言語埋め込みを得ることができる。
実験により,ベクトル量子化によって構築された音声クローンシステムは,知覚的評価の面では小さな劣化しか持たないが,データ転送や情報漏洩の抑制に望ましい表現ビットレートの低減や,話者の匿名化などのタスクにおいて重要な離散的潜在空間を有することが分かった。
関連論文リスト
- Investigating Disentanglement in a Phoneme-level Speech Codec for Prosody Modeling [39.80957479349776]
本稿では,RVQ-VAEモデルの離散空間の韻律モデリング機能について検討し,音素レベルでの操作を可能とした。
音素レベルの離散潜在表現は, 頑健かつ伝達可能な微細な韻律情報を捕捉し, 高いアンタングル化を実現することを示す。
論文 参考訳(メタデータ) (2024-09-13T09:27:05Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
提案手法の新たなポイントは、大量のデータで訓練された音声表現から組込みベクトルを得るためにSSLモデルを直接利用することである。
この不整合埋め込みにより、未知話者の再生性能が向上し、異なる音声によるリズム伝達が実現される。
論文 参考訳(メタデータ) (2023-04-24T10:15:58Z) - Learning utterance-level representations through token-level acoustic
latents prediction for Expressive Speech Synthesis [3.691712391306624]
細粒度潜在空間もまた粗粒度情報を捉えており、これは多彩な韻律表現を捉えるために潜在空間の次元が大きくなるにつれて明らかである。
本稿では、まず、豊富な音声属性をトークンレベル潜在空間にキャプチャし、入力テキストを付与した先行ネットワークを個別に訓練し、前ステップで抽出した音素レベル後潜在音を予測するために、発話レベル表現を学習することでこの問題を軽減する。
論文 参考訳(メタデータ) (2022-11-01T15:17:25Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - Deep Learning For Prominence Detection In Children's Read Speech [13.041607703862724]
本稿では, 幼児の口臭度評価に際し, 単語検出に係わる特徴を学習するためのセグメント音声波形を用いたシステムを提案する。
単語レベルの特徴とシーケンス情報の両方を取り入れた選択されたCRNN(畳み込みリカレントニューラルネットワーク)フレームワークは、知覚的に動機付けられたSincNetフィルタの恩恵を受けている。
論文 参考訳(メタデータ) (2021-10-27T08:51:42Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z) - FluentNet: End-to-End Detection of Speech Disfluency with Deep Learning [23.13972240042859]
本稿では,複数の異なる分散型を検出可能なエンドツーエンドのディープニューラルネットワークであるFluentNetを提案する。
FluentNetは、強いスペクトルフレームレベルの表現の学習を容易にするSqueeze-and-Excitation Residual畳み込みニューラルネットワークで構成されている。
合成スタッターを用いたパブリックなLibriSpeechデータセットに基づく分散データセットを提案する。
論文 参考訳(メタデータ) (2020-09-23T21:51:29Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。