論文の概要: Data-based Design of Inferential Sensors for Petrochemical Industry
- arxiv url: http://arxiv.org/abs/2106.13503v1
- Date: Fri, 25 Jun 2021 08:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 12:57:13.015350
- Title: Data-based Design of Inferential Sensors for Petrochemical Industry
- Title(参考訳): ペトロケミカル産業用推論センサのデータベース設計
- Authors: Martin Mojto, Karol \v{L}ubu\v{s}k\'y, Miroslav Fikar and Radoslav
Paulen
- Abstract要約: 産業において、不正確な(またはソフトな)センサーは、オンラインで測定された変数から不正確かつ稀に測定された(または完全に測定されていない)変数の値を推測するために用いられる。
本研究は, 石油精製装置2基の工業蒸留塔の製品組成推定センサの設計に焦点をあてたものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferential (or soft) sensors are used in industry to infer the values of
imprecisely and rarely measured (or completely unmeasured) variables from
variables measured online (e.g., pressures, temperatures). The main challenge,
akin to classical model overfitting, in designing an effective inferential
sensor is the selection of a correct structure of the sensor. The sensor
structure is represented by the number of inputs to the sensor, which
correspond to the variables measured online and their (simple) combinations.
This work is focused on the design of inferential sensors for product
composition of an industrial distillation column in two oil refinery units, a
Fluid Catalytic Cracking unit and a Vacuum Gasoil Hydrogenation unit. As the
first design step, we use several well-known data pre-treatment (gross error
detection) methods and compare the ability of these approaches to indicate
systematic errors and outliers in the available industrial data. We then study
effectiveness of various methods for design of the inferential sensors taking
into account the complexity and accuracy of the resulting model. The
effectiveness analysis indicates that the improvements achieved over the
current inferential sensors are up to 19 %.
- Abstract(参考訳): 産業において、不正確な(または柔らかい)センサーは、オンラインで測定された変数(例えば圧力、温度)から不正確かつ稀に測定された(または完全に測定されていない)変数の値を推測するために用いられる。
効果的な推論センサーを設計する際の、古典的なモデルオーバーフィッティングに似た主な課題は、センサーの正しい構造を選択することである。
センサ構造は、オンラインで測定された変数とその(単純な)組み合わせに対応するセンサへの入力数によって表現される。
本研究は,2つの油精製ユニット,流体触媒分解ユニットと真空ガス水素化ユニットにおける工業蒸留塔の製品組成推定センサの設計に焦点をあてたものである。
最初の設計ステップとして,いくつかのよく知られたデータ前処理(gross error detection)手法を用いて,利用可能な産業データにおける系統的エラーと異常値を示すために,これらの手法の能力を比較する。
次に,得られたモデルの複雑さと精度を考慮した推論センサの設計手法の有効性について検討する。
有効性分析の結果、現在の平均センサによる改善は最大19%であった。
関連論文リスト
- Deep convolutional neural networks for cyclic sensor data [0.0]
本研究では,センサによる条件モニタリングに焦点をあて,深層学習技術の応用について検討する。
本研究は,従来手法を用いたベースラインモデル,早期センサフュージョンを用いた単一CNNモデル,後期センサフュージョンを用いた2車線CNNモデル (2L-CNN) の3つのモデルの性能を比較した。
論文 参考訳(メタデータ) (2023-08-14T07:51:15Z) - Data-Based Design of Multi-Model Inferential Sensors [0.0]
産業プロセスの非線形特性は、通常、単純な線形推論センサーを設計する主な制限である。
本稿では,マルチモデル推論センサの設計のための2つの新しいアプローチを提案する。
その結果、単モデル/複数モデル推論センサの最先端設計技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2023-08-05T12:55:15Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
化学抵抗性ガス検知装置は製造中のセンサの変動の問題に悩まされている。
本研究では、SHAP(SHAP)のAI(XAI)法を用いて、センサデバイスにおけるセンサとセンサの変動を検出する新しい手法を提案する。
本手法は,GRU(Gated Recurrent Unit)モデルをトレーニングするために,人工的および現実的なオゾン濃度プロファイルを用いて試験する。
論文 参考訳(メタデータ) (2023-06-19T11:00:54Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Sensor Sampling Trade-Offs for Air Quality Monitoring With Low-Cost
Sensors [0.1957338076370071]
本研究では, 対流圏オゾン, 二酸化窒素, 一酸化窒素の低コストセンサの校正におけるデータサンプリング戦略の影響について述べる。
具体的には,センササブシステムのデューティサイクルを最小化するサンプリング戦略によって,データ品質を維持しながら消費電力を削減できることを示す。
論文 参考訳(メタデータ) (2021-12-14T11:05:55Z) - Machine Learning-Based Soft Sensors for Vacuum Distillation Unit [5.728037880354686]
製品の品質は、プロセスの製品が仕様の範囲内かどうかを知らせる重要な特性である。
この問題に対処する戦略の1つはソフトセンサーである。
ソフトセンサー(Soft Sensor)は、頻繁な測定特性の予測と予測に使用できるモデルの集合である。
論文 参考訳(メタデータ) (2021-11-19T15:30:43Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
すべてのセンサの継続的な監視は、リソースの制約のためにコストがかかる可能性がある。
有限パラメータ化確率分布の一般クラスに対する検出遅延に基づく情報理論の下界を導出する。
本稿では,異なる検知オプションの探索と質問行動の活用をシームレスに両立させる,計算効率のよいオンラインセンシング手法を提案する。
論文 参考訳(メタデータ) (2021-07-22T07:25:35Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
オンライン学習に基づく温度・湿度・圧力センサの非校正検出装置を開発した。
このソリューションはニューラルネットワークをメインコンポーネントとして統合し、校正条件下でのセンサーの動作から学習する。
その結果, 提案手法は, 偏差値0.25度, 1% RH, 1.5Paの偏差をそれぞれ検出できることがわかった。
論文 参考訳(メタデータ) (2021-02-02T15:44:39Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。