Data-based Design of Inferential Sensors for Petrochemical Industry
- URL: http://arxiv.org/abs/2106.13503v1
- Date: Fri, 25 Jun 2021 08:48:50 GMT
- Title: Data-based Design of Inferential Sensors for Petrochemical Industry
- Authors: Martin Mojto, Karol \v{L}ubu\v{s}k\'y, Miroslav Fikar and Radoslav
Paulen
- Abstract summary: Inferential (or soft) sensors are used in industry to infer the values of imprecisely and rarely measured (or completely unmeasured) variables from variables measured online.
This work is focused on the design of inferential sensors for product composition of an industrial distillation column in two oil refinery units.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferential (or soft) sensors are used in industry to infer the values of
imprecisely and rarely measured (or completely unmeasured) variables from
variables measured online (e.g., pressures, temperatures). The main challenge,
akin to classical model overfitting, in designing an effective inferential
sensor is the selection of a correct structure of the sensor. The sensor
structure is represented by the number of inputs to the sensor, which
correspond to the variables measured online and their (simple) combinations.
This work is focused on the design of inferential sensors for product
composition of an industrial distillation column in two oil refinery units, a
Fluid Catalytic Cracking unit and a Vacuum Gasoil Hydrogenation unit. As the
first design step, we use several well-known data pre-treatment (gross error
detection) methods and compare the ability of these approaches to indicate
systematic errors and outliers in the available industrial data. We then study
effectiveness of various methods for design of the inferential sensors taking
into account the complexity and accuracy of the resulting model. The
effectiveness analysis indicates that the improvements achieved over the
current inferential sensors are up to 19 %.
Related papers
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Deep convolutional neural networks for cyclic sensor data [0.0]
This study focuses on sensor-based condition monitoring and explores the application of deep learning techniques.
Our investigation involves comparing the performance of three models: a baseline model employing conventional methods, a single CNN model with early sensor fusion, and a two-lane CNN model (2L-CNN) with late sensor fusion.
arXiv Detail & Related papers (2023-08-14T07:51:15Z) - Data-Based Design of Multi-Model Inferential Sensors [0.0]
The nonlinear character of industrial processes is usually the main limitation to designing simple linear inferential sensors.
We propose two novel approaches for the design of multi-model inferential sensors.
The results show substantial improvements over the state-of-the-art design techniques for single-/multi-model inferential sensors.
arXiv Detail & Related papers (2023-08-05T12:55:15Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
chemi-resistive gas sensing devices are plagued by issues of sensor variations during manufacturing.
This study proposes a novel approach for detecting sensor-to-sensor variations in sensing devices using the explainable AI (XAI) method of SHapley Additive exPlanations (SHAP)
The methodology is tested using artificial and realistic Ozone concentration profiles to train a Gated Recurrent Unit (GRU) model.
arXiv Detail & Related papers (2023-06-19T11:00:54Z) - Sensor Sampling Trade-Offs for Air Quality Monitoring With Low-Cost
Sensors [0.1957338076370071]
We show the impact of the data sampling strategy in the calibration of tropospheric ozone, nitrogen dioxide and nitrogen monoxide low-cost sensors.
Specifically, we show how a sampling strategy that minimizes the duty cycle of the sensing subsystem can reduce power consumption while maintaining data quality.
arXiv Detail & Related papers (2021-12-14T11:05:55Z) - Machine Learning-Based Soft Sensors for Vacuum Distillation Unit [5.728037880354686]
The product quality is an important property that informs whether the products of the process are within the specifications.
One of the strategies to deal with this problem is soft sensors.
Soft sensors are a collection of models that can be used to predict and forecast some infrequently measured properties.
arXiv Detail & Related papers (2021-11-19T15:30:43Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.