論文の概要: Image-to-image Transformation with Auxiliary Condition
- arxiv url: http://arxiv.org/abs/2106.13696v1
- Date: Fri, 25 Jun 2021 15:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 15:11:04.583448
- Title: Image-to-image Transformation with Auxiliary Condition
- Title(参考訳): 補助条件による画像間変換
- Authors: Robert Leer, Hessi Roma, James Amelia
- Abstract要約: 本稿では,CycleGANのトレーニングにおけるポーズや対象のタイプなど,被験者のラベル情報を導入し,ラベルに配慮したトランスフォーメーションモデルを構築することを提案する。
我々は,SVHNからMNISTへのデジタル画像変換と,シミュレートされた実画像から実画像への監視カメラ画像変換実験を通じて,ラベル・シクレガンと呼ばれる手法の評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of image recognition like human pose detection, trained with
simulated images would usually get worse due to the divergence between real and
simulated data. To make the distribution of a simulated image close to that of
real one, there are several works applying GAN-based image-to-image
transformation methods, e.g., SimGAN and CycleGAN. However, these methods would
not be sensitive enough to the various change in pose and shape of subjects,
especially when the training data are imbalanced, e.g., some particular poses
and shapes are minor in the training data. To overcome this problem, we propose
to introduce the label information of subjects, e.g., pose and type of objects
in the training of CycleGAN, and lead it to obtain label-wise transforamtion
models. We evaluate our proposed method called Label-CycleGAN, through
experiments on the digit image transformation from SVHN to MNIST and the
surveillance camera image transformation from simulated to real images.
- Abstract(参考訳): シミュレーション画像で訓練された人間のポーズ検出のような画像認識の性能は通常、実際のデータとシミュレーションデータのばらつきによって悪化する。
シミュレーション画像の分布を実画像に近いものにするために、SimGAN や CycleGAN といった GAN ベースの画像-画像変換手法を適用する研究がいくつかある。
しかし、これらの方法は、特に訓練データが不均衡である場合、例えば、訓練データにおいて特定のポーズや形状が小さい場合など、被験者の姿勢や形の変化に十分敏感ではない。
この問題を克服するために, 被験者のポーズや物体の種類といったラベル情報をサイクガンの訓練に導入し, ラベルワイズ・トランスフォーメーションモデルを得ることを提案する。
提案手法であるラベルサイクガンをsvhnからmnistへのデジット画像変換とシミュレーション画像から実画像への監視カメラ画像変換実験により評価した。
関連論文リスト
- Learning Transformations To Reduce the Geometric Shift in Object
Detection [60.20931827772482]
画像キャプチャプロセスの変動から生じる幾何シフトに対処する。
我々は、これらのシフトを最小限に抑えるために幾何変換の集合を学習する自己学習アプローチを導入する。
我々は,カメラの視野変化(FoV)と視点変化(視点変化)の2つの異なるシフトについて,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-01-13T11:55:30Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - Extracting Deformation-Aware Local Features by Learning to Deform [3.364554138758565]
非剛性変形に対して頑健な静止画像から特徴量を計算するための新しい手法を提案する。
我々は、シミュレーション環境でオブジェクトに非剛性変形を適用することにより、モデルアーキテクチャをエンドツーエンドにトレーニングする。
実験により, この手法は, 最新の手工芸画像, 学習ベース画像, およびRGB-Dディスクリプタを異なるデータセットで比較した。
論文 参考訳(メタデータ) (2021-11-20T15:46:33Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Blind Motion Deblurring through SinGAN Architecture [21.104218472462907]
ブラインド・モーション・デブロワーリングは、ぼやけた観察から鋭いイメージを再構成する。
SinGANは無条件の生成モデルであり、単一の自然な画像から学習することができる。
論文 参考訳(メタデータ) (2020-11-07T06:09:16Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
深層畳み込みニューラルネットワークは、画像の劣化の最先端技術である。
本稿では,自己監督型動作遅延に対する識別可能なreblurモデルを提案する。
我々の実験は、自己監督された単一画像の劣化が本当に実現可能であることを実証した。
論文 参考訳(メタデータ) (2020-02-10T20:15:21Z) - Learning Numerical Observers using Unsupervised Domain Adaptation [13.548174682737756]
医用イメージングシステムは、客観的な画質測定によって一般的に評価される。
タスクベース画像品質評価のための数値オブザーバを実装するために,改良されたディープラーニング手法が検討されている。
大量の実験データをラベル付けして、ディープニューラルネットワークを訓練するのは、面倒で、高価で、主観的エラーの傾向があります。
論文 参考訳(メタデータ) (2020-02-03T22:58:28Z) - Deformation-aware Unpaired Image Translation for Pose Estimation on
Laboratory Animals [56.65062746564091]
我々は,神経回路が行動をどのようにオーケストレーションするかを研究するために,手動による監督を使わずに,神経科学モデル生物のポーズを捉えることを目的としている。
我々の重要な貢献は、未完成の画像翻訳フレームワークにおける外観、形状、ポーズの明示的で独立したモデリングである。
ショウジョウバエ(ハエ)、線虫(線虫)、ダニオ・レリオ(ゼブラフィッシュ)のポーズ推定精度の向上を実証した。
論文 参考訳(メタデータ) (2020-01-23T15:34:11Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。