論文の概要: Pastprop-RNN: improved predictions of the future by correcting the past
- arxiv url: http://arxiv.org/abs/2106.13881v1
- Date: Fri, 25 Jun 2021 20:53:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 13:51:57.468309
- Title: Pastprop-RNN: improved predictions of the future by correcting the past
- Title(参考訳): Pastprop-RNN:過去補正による未来予測の改善
- Authors: Andr\'e Baptista, Yassine Baghoussi, Carlos Soares, Jo\~ao
Mendes-Moreira, Miguel Arantes
- Abstract要約: Pastprop-LSTMはデータ中心のバックプロパゲーションアルゴリズムで、トレーニングデータにエラーの責任の一部を割り当て、それに応じて変更する。
競合データセット M4 と M5 の予測と Numenta Anomaly Benchmark の3種類の Pastprop-LSTM を検証した。
実験により,標準LSTMの予測誤差が高い場合,提案手法は予測精度を向上させることができることが示された。
- 参考スコア(独自算出の注目度): 1.3299507495084417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting accuracy is reliant on the quality of available past data. Data
disruptions can adversely affect the quality of the generated model (e.g.
unexpected events such as out-of-stock products when forecasting demand). We
address this problem by pastcasting: predicting how data should have been in
the past to explain the future better. We propose Pastprop-LSTM, a data-centric
backpropagation algorithm that assigns part of the responsibility for errors to
the training data and changes it accordingly. We test three variants of
Pastprop-LSTM on forecasting competition datasets, M4 and M5, plus the Numenta
Anomaly Benchmark. Empirical evaluation indicates that the proposed method can
improve forecasting accuracy, especially when the prediction errors of standard
LSTM are high. It also demonstrates the potential of the algorithm on datasets
containing anomalies.
- Abstract(参考訳): 予測精度は、利用可能な過去のデータの品質に依存する。
データ破壊は生成されたモデルの品質(例)に悪影響を及ぼす可能性がある。
需要予測時の在庫外商品などの予期せぬ出来事)
未来をよりよく説明するために、過去にどのようにデータが必要だったかを予測します。
本研究では,データ中心のバックプロパゲーションアルゴリズムであるPassprop-LSTMを提案する。
競合データセット M4 と M5 の予測と Numenta Anomaly Benchmark の3種類の Pastprop-LSTM を検証した。
実験により,標準LSTMの予測誤差が高い場合,提案手法は予測精度を向上させることができることが示された。
また、異常を含むデータセット上でアルゴリズムの可能性を示す。
関連論文リスト
- An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
深層生成学習は、特定のMLモデルを使用して、既存のデータの基盤となる分布を学習し、実際のデータに似た合成サンプルを生成する。
本研究では,変分オートエンコーダ(VAE)を用いた深部生成モデルを用いて,データ拡張の有効性を評価することを目的とする。
本研究では,拡張データを用いてトレーニングしたディープニューラルネットワーク(DNN)モデルの予測において,データ拡張が精度の向上につながるかどうかを検討した。
論文 参考訳(メタデータ) (2024-10-24T18:15:48Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Robust self-healing prediction model for high dimensional data [0.685316573653194]
本研究は、ロバスト自己治癒(RSH)ハイブリッド予測モデルを提案する。
それは、データを捨てるのではなく、エラーや不整合を取り除くことによって、データ全体を活用することによって機能する。
提案手法は,既存のハイパフォーマンスモデルと比較し,解析を行った。
論文 参考訳(メタデータ) (2022-10-04T17:55:50Z) - Probabilistic Deep Learning to Quantify Uncertainty in Air Quality
Forecasting [5.007231239800297]
この研究は、空気質予測の現実的な設定における不確実性定量化の最先端技術を適用した。
本稿では,経験的性能,信頼度推定の信頼性,実用性に基づいて,トレーニング確率モデルを記述し,予測の不確実性を評価する。
本実験は,データ駆動空気質予測の不確かさの定量化において,提案モデルが従来よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2021-12-05T17:01:18Z) - Backward-Compatible Prediction Updates: A Probabilistic Approach [12.049279991559091]
本稿では,予測更新問題を定式化し,上記の質問に対する効率的な確率的アプローチを提案する。
標準分類ベンチマークデータセットの広範な実験において,提案手法は後方互換性のある予測更新のための代替戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-02T13:05:31Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。