Domain Adaptive YOLO for One-Stage Cross-Domain Detection
- URL: http://arxiv.org/abs/2106.13939v1
- Date: Sat, 26 Jun 2021 04:17:42 GMT
- Title: Domain Adaptive YOLO for One-Stage Cross-Domain Detection
- Authors: Shizhao Zhang, Hongya Tuo, Jian Hu, Zhongliang Jing
- Abstract summary: Domain Adaptive YOLO (DA-YOLO) is proposed to improve cross-domain performance for one-stage detectors.
We evaluate our proposed method on popular datasets like Cityscapes, KITTI, SIM10K and etc.
- Score: 4.596221278839825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain shift is a major challenge for object detectors to generalize well to
real world applications. Emerging techniques of domain adaptation for two-stage
detectors help to tackle this problem. However, two-stage detectors are not the
first choice for industrial applications due to its long time consumption. In
this paper, a novel Domain Adaptive YOLO (DA-YOLO) is proposed to improve
cross-domain performance for one-stage detectors. Image level features
alignment is used to strictly match for local features like texture, and
loosely match for global features like illumination. Multi-scale instance level
features alignment is presented to reduce instance domain shift effectively ,
such as variations in object appearance and viewpoint. A consensus
regularization to these domain classifiers is employed to help the network
generate domain-invariant detections. We evaluate our proposed method on
popular datasets like Cityscapes, KITTI, SIM10K and etc.. The results
demonstrate significant improvement when tested under different cross-domain
scenarios.
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - DATR: Unsupervised Domain Adaptive Detection Transformer with Dataset-Level Adaptation and Prototypical Alignment [7.768332621617199]
We introduce a strong DETR-based detector named Domain Adaptive detection TRansformer ( DATR) for unsupervised domain adaptation of object detection.
Our proposed DATR incorporates a mean-teacher based self-training framework, utilizing pseudo-labels generated by the teacher model to further mitigate domain bias.
Experiments demonstrate superior performance and generalization capabilities of our proposed DATR in multiple domain adaptation scenarios.
arXiv Detail & Related papers (2024-05-20T03:48:45Z) - ATTA: Anomaly-aware Test-Time Adaptation for Out-of-Distribution
Detection in Segmentation [22.084967085509387]
We propose a dual-level OOD detection framework to handle domain shift and semantic shift jointly.
The first level distinguishes whether domain shift exists in the image by leveraging global low-level features.
The second level identifies pixels with semantic shift by utilizing dense high-level feature maps.
arXiv Detail & Related papers (2023-09-12T06:49:56Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.