ATTA: Anomaly-aware Test-Time Adaptation for Out-of-Distribution
Detection in Segmentation
- URL: http://arxiv.org/abs/2309.05994v2
- Date: Sat, 28 Oct 2023 19:37:02 GMT
- Title: ATTA: Anomaly-aware Test-Time Adaptation for Out-of-Distribution
Detection in Segmentation
- Authors: Zhitong Gao, Shipeng Yan, Xuming He
- Abstract summary: We propose a dual-level OOD detection framework to handle domain shift and semantic shift jointly.
The first level distinguishes whether domain shift exists in the image by leveraging global low-level features.
The second level identifies pixels with semantic shift by utilizing dense high-level feature maps.
- Score: 22.084967085509387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in dense out-of-distribution (OOD) detection have
primarily focused on scenarios where the training and testing datasets share a
similar domain, with the assumption that no domain shift exists between them.
However, in real-world situations, domain shift often exits and significantly
affects the accuracy of existing out-of-distribution (OOD) detection models. In
this work, we propose a dual-level OOD detection framework to handle domain
shift and semantic shift jointly. The first level distinguishes whether domain
shift exists in the image by leveraging global low-level features, while the
second level identifies pixels with semantic shift by utilizing dense
high-level feature maps. In this way, we can selectively adapt the model to
unseen domains as well as enhance model's capacity in detecting novel classes.
We validate the efficacy of our proposed method on several OOD segmentation
benchmarks, including those with significant domain shifts and those without,
observing consistent performance improvements across various baseline models.
Code is available at
${\href{https://github.com/gaozhitong/ATTA}{https://github.com/gaozhitong/ATTA}}$.
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - CDA: Contrastive-adversarial Domain Adaptation [11.354043674822451]
We propose a two-stage model for domain adaptation called textbfContrastive-adversarial textbfDomain textbfAdaptation textbf(CDA).
While the adversarial component facilitates domain-level alignment, two-stage contrastive learning exploits class information to achieve higher intra-class compactness across domains.
arXiv Detail & Related papers (2023-01-10T07:43:21Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Domain Adaptive YOLO for One-Stage Cross-Domain Detection [4.596221278839825]
Domain Adaptive YOLO (DA-YOLO) is proposed to improve cross-domain performance for one-stage detectors.
We evaluate our proposed method on popular datasets like Cityscapes, KITTI, SIM10K and etc.
arXiv Detail & Related papers (2021-06-26T04:17:42Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.