論文の概要: Exploring Temporal Context and Human Movement Dynamics for Online Action
Detection in Videos
- arxiv url: http://arxiv.org/abs/2106.13967v1
- Date: Sat, 26 Jun 2021 08:34:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 10:22:26.283962
- Title: Exploring Temporal Context and Human Movement Dynamics for Online Action
Detection in Videos
- Title(参考訳): 映像中のオンライン行動検出のための時間的文脈と人間の運動ダイナミクスの探索
- Authors: Vasiliki I. Vasileiou, Nikolaos Kardaris, Petros Maragos
- Abstract要約: 時間的文脈と人間の動きのダイナミクスは、オンライン行動検出に効果的に利用することができる。
提案手法は,様々な最先端アーキテクチャを用いて,抽出した特徴を適切に組み合わせて動作検出を改善する。
- 参考スコア(独自算出の注目度): 32.88517041655816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, the interaction between humans and robots is constantly expanding,
requiring more and more human motion recognition applications to operate in
real time. However, most works on temporal action detection and recognition
perform these tasks in offline manner, i.e. temporally segmented videos are
classified as a whole. In this paper, based on the recently proposed framework
of Temporal Recurrent Networks, we explore how temporal context and human
movement dynamics can be effectively employed for online action detection. Our
approach uses various state-of-the-art architectures and appropriately combines
the extracted features in order to improve action detection. We evaluate our
method on a challenging but widely used dataset for temporal action
localization, THUMOS'14. Our experiments show significant improvement over the
baseline method, achieving state-of-the art results on THUMOS'14.
- Abstract(参考訳): 現在、人間とロボットの相互作用は常に拡大しており、人間のモーション認識アプリケーションがリアルタイムに動作するのにますます必要となっている。
しかし、時間的行動の検出と認識に関するほとんどの研究は、これらのタスクをオフラインで実行している。
時間分割されたビデオは 全体として分類されます
本稿では,最近提案されたテンポラル・リカレント・ネットワークの枠組みに基づき,オンライン行動検出に時間的文脈と人間の動きのダイナミクスを効果的に活用する方法を考察する。
提案手法は最先端アーキテクチャを多用し,抽出した特徴を適切に組み合わせ,動作検出を改善する。
本手法は,時間的行動局所化のための挑戦的かつ広く使用されるデータセットであるthums'14を用いて評価する。
実験の結果,THUMOS'14では,ベースライン法よりも有意な改善が得られた。
関連論文リスト
- Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Human Activity Recognition Using Cascaded Dual Attention CNN and
Bi-Directional GRU Framework [3.3721926640077795]
視覚に基づく人間の活動認識は、ビデオ分析領域において重要な研究領域の1つとして現れてきた。
本稿では,人間の行動認識における深部識別的空間的特徴と時間的特徴を利用した,計算的に効率的だが汎用的な空間時空間カスケードフレームワークを提案する。
提案手法は, 従来の動作認識手法と比較して, フレーム毎秒最大167倍の性能向上を実現している。
論文 参考訳(メタデータ) (2022-08-09T20:34:42Z) - Continuous Human Action Recognition for Human-Machine Interaction: A
Review [39.593687054839265]
入力ビデオ内のアクションを認識することは難しいが、リアルタイムの人間と機械のインタラクションを必要とするアプリケーションに必要なタスクである。
我々は,ほとんどの最先端手法で使用される特徴抽出と学習戦略について述べる。
実世界のシナリオへのそのようなモデルの適用について検討し、いくつかの制限と研究の方向性について論じる。
論文 参考訳(メタデータ) (2022-02-26T09:25:44Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
本研究では,骨格データに基づく「相互作用対象の局所化」と「人間の行動認識」のための共同学習フレームワークを提案する。
本手法は,人間の行動認識のための最先端の手法を用いて,最高の,あるいは競争的な性能を実現する。
論文 参考訳(メタデータ) (2021-10-28T10:09:34Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z) - Deep Learning-based Action Detection in Untrimmed Videos: A Survey [20.11911785578534]
ほとんどの現実世界のビデオは長く、興味をそそる部分がある。
非トリミングビデオにおける時間的活動検出のタスクは、アクションの時間的境界をローカライズすることを目的としている。
本稿では,非トリミングビデオにおける時間的行動検出のためのディープラーニングに基づくアルゴリズムの概要について述べる。
論文 参考訳(メタデータ) (2021-09-30T22:42:25Z) - Collaborative Distillation in the Parameter and Spectrum Domains for
Video Action Recognition [79.60708268515293]
本稿では,行動認識のための小型かつ効率的なネットワークの訓練方法について検討する。
周波数領域における2つの蒸留戦略,すなわち特徴スペクトルとパラメータ分布蒸留を提案する。
提案手法は,同じバックボーンを持つ最先端の手法よりも高い性能を実現することができる。
論文 参考訳(メタデータ) (2020-09-15T07:29:57Z) - Attention-Oriented Action Recognition for Real-Time Human-Robot
Interaction [11.285529781751984]
本稿では,リアルタイムインタラクションの必要性に応えるために,アテンション指向のマルチレベルネットワークフレームワークを提案する。
具体的には、プレアテンションネットワークを使用して、低解像度でシーン内のインタラクションに大まかにフォーカスする。
他のコンパクトCNNは、抽出されたスケルトンシーケンスをアクション認識用の入力として受信する。
論文 参考訳(メタデータ) (2020-07-02T12:41:28Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
本研究では,スポーツビデオにサブアクションの手動アノテーションを付加した新しいデータセットを構築し,その上に時間的行動解析を行う。
スポーツ活動は通常、複数のサブアクションから構成されており、このような時間構造に対する意識は、行動認識に有益であることを示す。
また,時間的解析手法を多数検討し,そのラベルを知らずにトレーニングデータからサブアクションをマイニングできる改良手法を考案した。
論文 参考訳(メタデータ) (2020-05-20T17:45:18Z) - ZSTAD: Zero-Shot Temporal Activity Detection [107.63759089583382]
本研究では,ゼロショット時間的活動検出(ZSTAD)と呼ばれる新たなタスク設定を提案する。
このソリューションのアーキテクチャとして,R-C3Dに基づくエンドツーエンドのディープネットワークを設計する。
THUMOS14とCharadesデータセットの両方の実験は、目に見えない活動を検出するという点で有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-03-12T02:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。