論文の概要: Continuous Human Action Recognition for Human-Machine Interaction: A
Review
- arxiv url: http://arxiv.org/abs/2202.13096v1
- Date: Sat, 26 Feb 2022 09:25:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 15:43:25.234672
- Title: Continuous Human Action Recognition for Human-Machine Interaction: A
Review
- Title(参考訳): ヒューマンマシンインタラクションのための連続的ヒューマンアクション認識:レビュー
- Authors: Harshala Gammulle, David Ahmedt-Aristizabal, Simon Denman, Lachlan
Tychsen-Smith, Lars Petersson, Clinton Fookes
- Abstract要約: 入力ビデオ内のアクションを認識することは難しいが、リアルタイムの人間と機械のインタラクションを必要とするアプリケーションに必要なタスクである。
我々は,ほとんどの最先端手法で使用される特徴抽出と学習戦略について述べる。
実世界のシナリオへのそのようなモデルの適用について検討し、いくつかの制限と研究の方向性について論じる。
- 参考スコア(独自算出の注目度): 39.593687054839265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With advances in data-driven machine learning research, a wide variety of
prediction models have been proposed to capture spatio-temporal features for
the analysis of video streams. Recognising actions and detecting action
transitions within an input video are challenging but necessary tasks for
applications that require real-time human-machine interaction. By reviewing a
large body of recent related work in the literature, we thoroughly analyse,
explain and compare action segmentation methods and provide details on the
feature extraction and learning strategies that are used on most
state-of-the-art methods. We cover the impact of the performance of object
detection and tracking techniques on human action segmentation methodologies.
We investigate the application of such models to real-world scenarios and
discuss several limitations and key research directions towards improving
interpretability, generalisation, optimisation and deployment.
- Abstract(参考訳): データ駆動機械学習研究の進歩により、ビデオストリームの分析のための時空間的特徴を捉えるための様々な予測モデルが提案されている。
リアルタイムなヒューマンマシンインタラクションを必要とするアプリケーションには,アクションを認識し,アクション遷移を検出することが難しい。
文献における最近の研究を概観することにより、アクションセグメンテーション手法を徹底的に分析、説明、比較し、ほとんどの最先端手法で使用される特徴抽出と学習戦略の詳細を提供する。
本稿では,物体検出および追跡手法が人間の行動分節手法に与える影響について述べる。
このようなモデルを実世界のシナリオに適用し、解釈可能性、一般化、最適化、展開を改善するためのいくつかの限界と重要な研究方向について検討する。
関連論文リスト
- Human Action Anticipation: A Survey [86.415721659234]
行動予測に関する文献は、行動予測、活動予測、意図予測、目標予測など、様々なタスクにまたがる。
我々の調査は、この断片化された文献を結びつけることを目的としており、最近の技術革新とモデルトレーニングと評価のための新しい大規模データセットの開発をカバーしています。
論文 参考訳(メタデータ) (2024-10-17T21:37:40Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
我々は,人間行動分析のための計算駆動型データ探索を効率化するために,モジュール型でフレキシブルでユーザフレンドリなソフトウェアフレームワークを導入する。
我々の主な目的は、高度な計算方法論へのアクセスを民主化することであり、これにより研究者は、広範囲の技術的熟練を必要とせずに、詳細な行動分析を行うことができる。
論文 参考訳(メタデータ) (2024-07-18T11:28:52Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - A Review of Machine Learning Methods Applied to Video Analysis Systems [3.518774226658318]
本稿では,ビデオ解析のための機械学習技術の開発について調査する。
本稿では,ビデオ分析における自己教師型学習,半教師型学習,アクティブ学習,ゼロショット学習の開発の概要について述べる。
論文 参考訳(メタデータ) (2023-12-08T20:24:03Z) - A Unified Comparison of User Modeling Techniques for Predicting Data
Interaction and Detecting Exploration Bias [17.518601254380275]
我々は,4つのユーザスタディデータセットの多種多様なセットにおいて,その性能に基づいて8つのユーザモデリングアルゴリズムを比較し,ランク付けする。
本研究は,ユーザインタラクションの分析と可視化のためのオープンな課題と新たな方向性を強調した。
論文 参考訳(メタデータ) (2022-08-09T19:51:10Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Exploring Temporal Context and Human Movement Dynamics for Online Action
Detection in Videos [32.88517041655816]
時間的文脈と人間の動きのダイナミクスは、オンライン行動検出に効果的に利用することができる。
提案手法は,様々な最先端アーキテクチャを用いて,抽出した特徴を適切に組み合わせて動作検出を改善する。
論文 参考訳(メタデータ) (2021-06-26T08:34:19Z) - Recent Progress in Appearance-based Action Recognition [73.6405863243707]
アクション認識は、ビデオ内の様々な人間の行動を特定するタスクである。
最近の外見に基づく手法は、正確な行動認識に向けて有望な進歩を遂げている。
論文 参考訳(メタデータ) (2020-11-25T10:18:12Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。