Role of Dissipation on the Stability of a Parametrically Driven Quantum
Harmonic Oscillator
- URL: http://arxiv.org/abs/2106.14018v1
- Date: Sat, 26 Jun 2021 13:21:44 GMT
- Title: Role of Dissipation on the Stability of a Parametrically Driven Quantum
Harmonic Oscillator
- Authors: Subhasish Chaki and Aranya B Bhattacherjee
- Abstract summary: We show that the time evolution of a parametrically driven dissipative quantum oscillator has a strong connection with the classical damped Mathieu equation.
We obtain a closed relationship between the localization of the Wigner function and the stability of the damped Mathieu equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the dissipative dynamics of a single quantum harmonic oscillator
subjected to a parametric driving with in an effective Hamiltonian approach.
Using Liouville von Neumann approach, we show that the time evolution of a
parametrically driven dissipative quantum oscillator has a strong connection
with the classical damped Mathieu equation. Based on the numerical analysis of
the Monodromy matrix, we demonstrate that the dynamical instability generated
by the parametric driving are reduced by the effect of dissipation. Further, we
obtain a closed relationship between the localization of the Wigner function
and the stability of the damped Mathieu equation.
Related papers
- Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Moving mirror-field dynamics under intrinsic decoherence [77.34726150561087]
We study the decaying dynamics in the mirror-field interaction by means of the intrinsic decoherence scheme.
We show expectation values, correlations, and Husimi functions for the solutions obtained.
arXiv Detail & Related papers (2023-05-06T03:41:45Z) - A diagrammatic method to compute the effective Hamiltonian of driven
nonlinear oscillators [0.0]
We present a new method, based on Feynman-like diagrams, for computing the effective Hamiltonian of driven nonlinear oscillators.
The pictorial structure associated with each diagram corresponds directly to a Hamiltonian term, the prefactor of which involves a simple counting of topologically equivalent diagrams.
Our method establishes the foundation of the dynamic control of quantum systems with the precision needed for future quantum machines.
arXiv Detail & Related papers (2023-04-26T16:31:21Z) - Quadratic Time-dependent Quantum Harmonic Oscillator [0.0]
We present a Lie algebraic approach to a Hamiltonian class covering driven, parametric quantum harmonic oscillators.
Our unitary-transformation-based approach provides a solution to our general quadratic time-dependent quantum harmonic model.
arXiv Detail & Related papers (2022-11-23T19:50:49Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Lindblad master equations for quantum systems coupled to dissipative
bosonic modes [0.0]
We derive Lindblad master equations for a subsystem whose dynamics is coupled to bosonic modes.
We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins.
This master equation accurately predicts the Dicke phase transition and gives the correct steady state.
arXiv Detail & Related papers (2022-03-07T11:21:48Z) - Intrinsic decoherence for the displaced harmonic oscillator [77.34726150561087]
We use the complete solution of the Milburn equation that describes intrinsic decoherence.
We calculate the expectation values of position quadrature, and the number operator in initial coherent and squeezed states.
arXiv Detail & Related papers (2021-12-06T03:15:43Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Enhancement of squeezing in the Rabi model with parametric nonlinearity [0.0]
The squeezing effect arises in the interacting qubit-oscillator system.
Based on the generalized rotating wave approximation, the approximate energy spectrum is compared with the numerically determined spectrum of the Hamiltonian.
It is shown that the squeezing produced in the Rabi model can be enhanced substantially in the presence of a parametric nonlinear term.
arXiv Detail & Related papers (2020-08-04T06:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.