Quadratic Time-dependent Quantum Harmonic Oscillator
- URL: http://arxiv.org/abs/2211.13281v2
- Date: Tue, 23 May 2023 21:36:39 GMT
- Title: Quadratic Time-dependent Quantum Harmonic Oscillator
- Authors: F. E. Onah and E. Garc\'ia Herrera and J. A. Ruelas-Galv\'an and G.
Ju\'arez Rangel and E. Real Norzagaray and B. M. Rodr\'iguez-Lara
- Abstract summary: We present a Lie algebraic approach to a Hamiltonian class covering driven, parametric quantum harmonic oscillators.
Our unitary-transformation-based approach provides a solution to our general quadratic time-dependent quantum harmonic model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a Lie algebraic approach to a Hamiltonian class covering driven,
parametric quantum harmonic oscillators where the parameter set -- mass,
frequency, driving strength, and parametric pumping -- is time-dependent. Our
unitary-transformation-based approach provides a solution to our general
quadratic time-dependent quantum harmonic model. As an example, we show an
analytic solution to the periodically driven quantum harmonic oscillator
without the rotating wave approximation; it works for any given detuning and
coupling strength regime. For the sake of validation, we provide an analytic
solution to the historical Caldirola--Kanai quantum harmonic oscillator and
show that there exists a unitary transformation within our framework that takes
a generalized version of it onto the Paul trap Hamiltonian. In addition, we
show how our approach provides the dynamics of generalized models whose
Schr\"odinger equation becomes numerically unstable in the laboratory frame.
Related papers
- Time-Dependent Dunkl-Schrödinger Equation with an Angular-Dependent Potential [0.0]
The Schr"odinger equation is a fundamental equation in quantum mechanics.
Over the past decade, theoretical studies have focused on adapting the Dunkl derivative to quantum mechanical problems.
arXiv Detail & Related papers (2024-08-04T13:11:52Z) - Quantum model of hydrogen-like atoms in hilbert space by introducing the
creation and annihilation operators [0.0]
An analytical approach with series is extensively used based on wave mechanics theory in most of quantum textbooks.
We will illustrate how systematically making an appropriate groundwork to discover the coherent states can lead to providing the energy quantization and normalized radial wave functions attached to the matrix representation.
arXiv Detail & Related papers (2023-08-25T14:42:55Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Bloch-like super-oscillations and unidirectional motion of phase driven
quantum walkers [0.0]
We study the dynamics of a quantum walker simultaneously subjected to time-independent and -dependent phases.
We show that the average drift velocity can be well described within a continuous-time analogous model.
arXiv Detail & Related papers (2020-08-15T12:19:05Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Floquet theory for temporal correlations and spectra in time-periodic
open quantum systems: Application to squeezed parametric oscillation beyond
the rotating-wave approximation [0.0]
We propose a method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems.
We show how the quantum Langevin equations for the fluctuations can be efficiently integrated by partitioning the time domain into one-period duration intervals.
arXiv Detail & Related papers (2020-05-17T13:25:04Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.