論文の概要: A Span-Based Model for Joint Overlapped and Discontinuous Named Entity
Recognition
- arxiv url: http://arxiv.org/abs/2106.14373v1
- Date: Mon, 28 Jun 2021 02:37:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 18:12:01.702975
- Title: A Span-Based Model for Joint Overlapped and Discontinuous Named Entity
Recognition
- Title(参考訳): Span-based model for joint overlapped and discontinuous Named Entity Recognition
- Authors: Fei Li, Zhichao Lin, Meishan Zhang, Donghong Ji
- Abstract要約: 重なり合いと不連続性の両方を共同で認識できる新しいスパンベースモデルを提案する。
複数のベンチマークデータセットの実験結果から,重なり合った不連続なNERに対して,我々のモデルは高い競争力を持つことが示された。
- 参考スコア(独自算出の注目度): 24.673897695262024
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Research on overlapped and discontinuous named entity recognition (NER) has
received increasing attention. The majority of previous work focuses on either
overlapped or discontinuous entities. In this paper, we propose a novel
span-based model that can recognize both overlapped and discontinuous entities
jointly. The model includes two major steps. First, entity fragments are
recognized by traversing over all possible text spans, thus, overlapped
entities can be recognized. Second, we perform relation classification to judge
whether a given pair of entity fragments to be overlapping or succession. In
this way, we can recognize not only discontinuous entities, and meanwhile
doubly check the overlapped entities. As a whole, our model can be regarded as
a relation extraction paradigm essentially. Experimental results on multiple
benchmark datasets (i.e., CLEF, GENIA and ACE05) show that our model is highly
competitive for overlapped and discontinuous NER.
- Abstract(参考訳): 重複した不連続なエンティティ認識(NER)の研究が注目されている。
以前の作業の大部分は重複したエンティティか不連続なエンティティに重点を置いている。
本稿では,重複エンティティと不連続エンティティの両方を協調的に認識できる新しいスパンベースモデルを提案する。
モデルには2つの大きなステップがある。
まず、エンティティフラグメントはすべての可能なテキストスパンをトラバースすることで認識され、重複したエンティティを認識することができる。
次に、与えられた一対のエンティティフラグメントが重複するかどうかを判断するために関係分類を行う。
このようにして、不連続なエンティティを認識できるだけでなく、重複しているエンティティを二重にチェックできる。
全体として、我々のモデルは本質的に関係抽出パラダイムとみなすことができる。
複数のベンチマークデータセット (CLEF, GENIA, ACE05) に対する実験結果から, 重なり合った非連続的なNERに対して, 我々のモデルは高い競争力を持つことが示された。
関連論文リスト
- Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning [32.62763647036567]
名前付きエンティティ認識は、ラベル付けされたいくつかの例に基づいて、新しいタイプの名前付きエンティティを識別できる。
MsFNER(Entity-Aware Contrastive Learning)を用いたFew-shot NERのためのハイブリッド多段復号法を提案する。
MsFNERは一般的なNERを、エンティティスパン検出とエンティティ分類の2つのステージに分割する。
論文 参考訳(メタデータ) (2024-04-10T12:31:09Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
名前付きエンティティ認識(NER)は自然言語処理において重要な研究課題である。
本稿では,エンティティ境界検出タスクを名前付きエンティティ認識タスクに組み込むマルチタスク変換器を提案する。
論文 参考訳(メタデータ) (2023-03-20T05:11:22Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
ネスト現象によるジレンマを解決するために,ASACと呼ばれる新しい手法を提案する。
提案手法は,適応共有(AS)部と注意条件付きランダムフィールド(ACRF)モジュールの2つの鍵モジュールを含む。
我々のモデルは、異なるカテゴリのエンティティ間の暗黙の区別と関係をキャプチャすることで、より良いエンティティ表現を学ぶことができる。
論文 参考訳(メタデータ) (2022-11-09T09:23:56Z) - SpanProto: A Two-stage Span-based Prototypical Network for Few-shot
Named Entity Recognition [45.012327072558975]
名前付きエンティティ認識(NER)は、アノテーション付きデータが少ない名前付きエンティティを識別することを目的としている。
そこで本研究では,2段階のアプローチを用いて,数発のNERに対処するセミナルスパンベースプロトタイプネットワーク(SpanProto)を提案する。
スパン抽出の段階では、逐次タグを大域境界行列に変換し、モデルが明示的な境界情報に集中できるようにする。
分類に言及するために、原型学習を活用してラベル付きスパンのセマンティック表現をキャプチャし、新しいクラスエンティティへの適応性を向上する。
論文 参考訳(メタデータ) (2022-10-17T12:59:33Z) - Duality-Induced Regularizer for Semantic Matching Knowledge Graph
Embeddings [70.390286614242]
本稿では, 類似のセマンティクスを持つエンティティの埋め込みを効果的に促進する新しい正規化器(duality-induced RegulArizer (DURA))を提案する。
実験により、DURAは、最先端のセマンティックマッチングモデルの性能を一貫して改善することを示した。
論文 参考訳(メタデータ) (2022-03-24T09:24:39Z) - Suspected Object Matters: Rethinking Model's Prediction for One-stage
Visual Grounding [93.82542533426766]
疑似オブジェクト間の対象オブジェクト選択を促進するため,疑似オブジェクト変換機構(SOT)を提案する。
SOTは既存のCNNとTransformerベースのワンステージ視覚グラウンドにシームレスに統合できる。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-03-10T06:41:07Z) - Rethinking the Two-Stage Framework for Grounded Situation Recognition [61.93345308377144]
接地状況認識は「人間のような」事象理解に向けた重要なステップである。
既存のGSR手法では、第1段階で動詞を予測し、第2段階での意味的役割を検出するという、2段階の枠組みを採用している。
本稿では,CFVM (Coarse-to-Fine Verb Model) と Transformer-based Noun Model (TNM) で構成される新しいGSR用SituFormerを提案する。
論文 参考訳(メタデータ) (2021-12-10T08:10:56Z) - A Sequence-to-Set Network for Nested Named Entity Recognition [38.05786148160635]
ネストNERのための新しいシーケンス・ツー・セットニューラルネットワークを提案する。
我々は、非自己回帰デコーダを使用して、1回のパスで最終的なエンティティセットを予測する。
実験により, ネストした3つのNERコーパスに対して, 提案モデルが最先端となることを示す。
論文 参考訳(メタデータ) (2021-05-19T03:10:04Z) - Locate and Label: A Two-stage Identifier for Nested Named Entity
Recognition [9.809157050048375]
名前付きエンティティ認識のための2段階エンティティ識別子を提案する。
まず、シードスパンのフィルタリングと境界回帰によってスパン提案を生成し、エンティティの特定を行い、それに対応するカテゴリで境界調整スパン提案をラベル付けする。
本手法は,訓練中のエンティティの境界情報と部分マッチングスパンを効果的に活用する。
論文 参考訳(メタデータ) (2021-05-14T12:52:34Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。