論文の概要: Towards Model-informed Precision Dosing with Expert-in-the-loop Machine
Learning
- arxiv url: http://arxiv.org/abs/2106.14384v1
- Date: Mon, 28 Jun 2021 03:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 00:34:29.223148
- Title: Towards Model-informed Precision Dosing with Expert-in-the-loop Machine
Learning
- Title(参考訳): エキスパート・イン・ザ・ループ機械学習によるモデルインフォームドッキング
- Authors: Yihuang Kang, Yi-Wen Chiu, Ming-Yen Lin, Fang-yi Su, Sheng-Tai Huang
- Abstract要約: モデル学習ループに人的専門家を取り入れることで、モデル学習を加速し、解釈可能性を向上させるMLフレームワークを検討する。
本稿では,データアノテーションのコストが高い学習問題に対処することを目的とした,新たなヒューマン・イン・ザ・ループMLフレームワークを提案する。
精度測定への応用により,本手法はデータから解釈可能なルールを学習し,専門家の作業負荷を低減できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) and its applications have been transforming our lives
but it is also creating issues related to the development of fair, accountable,
transparent, and ethical Artificial Intelligence. As the ML models are not
fully comprehensible yet, it is obvious that we still need humans to be part of
algorithmic decision-making processes. In this paper, we consider a ML
framework that may accelerate model learning and improve its interpretability
by incorporating human experts into the model learning loop. We propose a novel
human-in-the-loop ML framework aimed at dealing with learning problems that the
cost of data annotation is high and the lack of appropriate data to model the
association between the target tasks and the input features. With an
application to precision dosing, our experimental results show that the
approach can learn interpretable rules from data and may potentially lower
experts' workload by replacing data annotation with rule representation
editing. The approach may also help remove algorithmic bias by introducing
experts' feedback into the iterative model learning process.
- Abstract(参考訳): 機械学習(ML)とその応用は私たちの生活を変えつつありますが、公正で説明責任があり、透明で倫理的な人工知能の開発に関する問題も生み出しています。
mlモデルはまだ完全には理解できないため、アルゴリズムによる意思決定プロセスの一部として人間が必要であることは明らかです。
本稿では,モデル学習を高速化し,モデル学習ループに人間専門家を組み込むことで解釈可能性を向上させるMLフレームワークを検討する。
本稿では,データアノテーションのコストが高く,目的タスクと入力特徴の関係をモデル化する適切なデータがないという学習問題に対処することを目的とした,新たなヒューマン・イン・ザ・ループMLフレームワークを提案する。
実験結果から,データから解釈可能なルールを学習し,データアノテーションをルール表現に置き換えることで,専門家の作業負荷を低減できる可能性が示唆された。
このアプローチは、反復的なモデル学習プロセスに専門家のフィードバックを導入することで、アルゴリズムバイアスを取り除くのにも役立ちます。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - How to unlearn a learned Machine Learning model ? [0.0]
機械学習モデルを学習し、その能力を視覚化するためのエレガントなアルゴリズムを提示します。
基礎となる数学的理論を解明し、所望のデータに対する未学習モデルの性能と望ましくないデータに対する無知の両方を評価するための具体的な指標を確立する。
論文 参考訳(メタデータ) (2024-10-13T17:38:09Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
本稿では,事前訓練された大規模言語モデルのタスク適応フェーズに対する効率的なアンラーニング手法に着目した。
タスク適応のための文脈内学習を行うLLMの能力は、タスク適応トレーニングデータの効率的なアンラーニングを可能にする。
本稿では,様々な推論コストを考慮に入れた非学習コストの包括的尺度を提案する。
論文 参考訳(メタデータ) (2024-02-01T16:43:04Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Learning a Formula of Interpretability to Learn Interpretable Formulas [1.7616042687330642]
人間の解釈可能性の非対象プロキシのMLモデルが人間のフィードバックから学習可能であることを示す。
進化的シンボリック回帰について示す。
我々のアプローチは、次世代の解釈可能な(進化的な)MLアルゴリズムの設計のための重要なステップストーンである。
論文 参考訳(メタデータ) (2020-04-23T13:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。