論文の概要: Unlearnable Algorithms for In-context Learning
- arxiv url: http://arxiv.org/abs/2402.00751v1
- Date: Thu, 1 Feb 2024 16:43:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 14:23:45.374065
- Title: Unlearnable Algorithms for In-context Learning
- Title(参考訳): 文脈内学習のための学習不能アルゴリズム
- Authors: Andrei Muresanu, Anvith Thudi, Michael R. Zhang, Nicolas Papernot
- Abstract要約: 本稿では,事前訓練された大規模言語モデルのタスク適応フェーズに対する効率的なアンラーニング手法に着目した。
タスク適応のための文脈内学習を行うLLMの能力は、タスク適応トレーニングデータの効率的なアンラーニングを可能にする。
本稿では,様々な推論コストを考慮に入れた非学習コストの包括的尺度を提案する。
- 参考スコア(独自算出の注目度): 36.895152458323764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning is a desirable operation as models get increasingly
deployed on data with unknown provenance. However, achieving exact unlearning
-- obtaining a model that matches the model distribution when the data to be
forgotten was never used -- is challenging or inefficient, often requiring
significant retraining. In this paper, we focus on efficient unlearning methods
for the task adaptation phase of a pretrained large language model (LLM). We
observe that an LLM's ability to do in-context learning for task adaptation
allows for efficient exact unlearning of task adaptation training data. We
provide an algorithm for selecting few-shot training examples to prepend to the
prompt given to an LLM (for task adaptation), ERASE, whose unlearning operation
cost is independent of model and dataset size, meaning it scales to large
models and datasets. We additionally compare our approach to fine-tuning
approaches and discuss the trade-offs between the two approaches. This leads us
to propose a new holistic measure of unlearning cost which accounts for varying
inference costs, and conclude that in-context learning can often be more
favourable than fine-tuning for deployments involving unlearning requests.
- Abstract(参考訳): 機械学習は、モデルが未知のデータにますますデプロイされるにつれて、望ましい操作である。
しかし、正確に非学習を達成する -- 忘れられるデータが使われなかったときにモデル分布にマッチするモデルを得る -- は、困難または非効率的であり、しばしば重大な再トレーニングを必要とします。
本稿では,事前学習された大規模言語モデル(llm)のタスク適応段階における効率的なアンラーニング手法に着目した。
タスク適応のための文脈内学習を行うLLMの能力は、タスク適応トレーニングデータの効率的なアンラーニングを可能にする。
LLM(タスク適応用)に与えられたプロンプトに順応する数ショットのトレーニング例を選択するアルゴリズムであるERASEは、未学習の作業コストがモデルやデータセットのサイズに依存しないため、大規模なモデルやデータセットにスケールする。
さらに、我々のアプローチを微調整アプローチと比較し、2つのアプローチ間のトレードオフについて議論する。
これにより、さまざまな推論コストを考慮に入れたアンラーニングコストの新しい包括的尺度を提案し、アンラーニング要求を含むデプロイメントの微調整よりもコンテキスト内学習の方が望ましいと結論付ける。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Exploring intra-task relations to improve meta-learning algorithms [1.223779595809275]
我々は,タスクの効果的なミニバッチによるトレーニング安定性向上のために,タスク関係の外部知識を活用することを目的としている。
ミニバッチでタスクの多様なセットを選択すると、完全な勾配がより良く見積もられるため、トレーニングにおけるノイズの低減につながる、という仮説を立てる。
論文 参考訳(メタデータ) (2023-12-27T15:33:52Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - In-Context Unlearning: Language Models as Few Shot Unlearners [27.962361828354716]
我々は,Large Language Models (LLMs) のための新しいアンラーニング手法を提案する。
このメソッドは、モデルパラメータを更新することなく、コンテキスト内で特定の種類の入力を提供することで、モデルからインスタンスを解放する。
実験の結果、文脈内アンラーニングは、モデルパラメータへのアクセスを必要とする他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-11T15:19:31Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning [13.149070833843133]
機械学習、すなわち、トレーニングデータのいくつかを忘れるモデルを持つことは、プライバシー法が忘れられる権利の変種を促進するにつれ、ますます重要になっている。
まず、ほぼ未学習のモデルが正確に訓練されたモデルに近いことを証明しようとする、近似的未学習の定義は、異なるデータセットを用いて同じモデルを得ることができるため、正しくないことを示す。
そして、正確なアンラーニングアプローチに目を向け、アンラーニングのクレームの検証方法を尋ねます。
論文 参考訳(メタデータ) (2021-10-22T16:16:56Z) - Certifiable Machine Unlearning for Linear Models [1.484852576248587]
機械学習は、トレーニングされたトレーニングデータのサブセットが削除された後、機械学習(ML)モデルを更新するタスクである。
本稿では,線形モデルに対する3つの非学習手法について実験的に検討する。
論文 参考訳(メタデータ) (2021-06-29T05:05:58Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。