Prior-Induced Information Alignment for Image Matting
- URL: http://arxiv.org/abs/2106.14439v1
- Date: Mon, 28 Jun 2021 07:46:59 GMT
- Title: Prior-Induced Information Alignment for Image Matting
- Authors: Yuhao Liu, Jiake Xie, Yu Qiao, Yong Tang and, Xin Yang
- Abstract summary: We propose a novel network named Prior-Induced Information Alignment Matting Network (PIIAMatting)
It can efficiently model the distinction of pixel-wise response maps and the correlation of layer-wise feature maps.
PIIAMatting performs favourably against state-of-the-art image matting methods on the Alphamatting.com, Composition-1K and Distinctions-646 dataset.
- Score: 28.90998570043986
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Image matting is an ill-posed problem that aims to estimate the opacity of
foreground pixels in an image. However, most existing deep learning-based
methods still suffer from the coarse-grained details. In general, these
algorithms are incapable of felicitously distinguishing the degree of
exploration between deterministic domains (certain FG and BG pixels) and
undetermined domains (uncertain in-between pixels), or inevitably lose
information in the continuous sampling process, leading to a sub-optimal
result. In this paper, we propose a novel network named Prior-Induced
Information Alignment Matting Network (PIIAMatting), which can efficiently
model the distinction of pixel-wise response maps and the correlation of
layer-wise feature maps. It mainly consists of a Dynamic Gaussian Modulation
mechanism (DGM) and an Information Alignment strategy (IA). Specifically, the
DGM can dynamically acquire a pixel-wise domain response map learned from the
prior distribution. The response map can present the relationship between the
opacity variation and the convergence process during training. On the other
hand, the IA comprises an Information Match Module (IMM) and an Information
Aggregation Module (IAM), jointly scheduled to match and aggregate the adjacent
layer-wise features adaptively. Besides, we also develop a Multi-Scale
Refinement (MSR) module to integrate multi-scale receptive field information at
the refinement stage to recover the fluctuating appearance details. Extensive
quantitative and qualitative evaluations demonstrate that the proposed
PIIAMatting performs favourably against state-of-the-art image matting methods
on the Alphamatting.com, Composition-1K and Distinctions-646 dataset.
Related papers
- A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding [76.44979557843367]
We propose a novel multi-view stereo (MVS) framework that gets rid of the depth range prior.
We introduce a Multi-view Disparity Attention (MDA) module to aggregate long-range context information.
We explicitly estimate the quality of the current pixel corresponding to sampled points on the epipolar line of the source image.
arXiv Detail & Related papers (2024-11-04T08:50:16Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas.
objects of the same category within HRS images show significant differences in scale and shape across diverse geographical environments.
We propose a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs.
arXiv Detail & Related papers (2023-05-22T03:58:25Z) - Adaptive Graph Convolution Module for Salient Object Detection [7.278033100480174]
We propose an adaptive graph convolution module (AGCM) to deal with complex scenes.
Prototype features are extracted from the input image using a learnable region generation layer.
The proposed AGCM dramatically improves the SOD performance both quantitatively and quantitatively.
arXiv Detail & Related papers (2023-03-17T07:07:17Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Content-aware Directed Propagation Network with Pixel Adaptive Kernel
Attention [20.0783340490331]
We propose a novel operation, called pixel adaptive kernel attention (PAKA)
PAKA provides directivity to the filter weights by multiplying spatially varying attention from learnable features.
Our method is trainable in an end-to-end manner and applicable to any CNN-based models.
arXiv Detail & Related papers (2021-07-28T02:59:19Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
We present a novel Domain-oriented Feature Embedding (DoFE) framework to improve the generalization ability of CNNs on unseen target domains.
Our DoFE framework dynamically enriches the image features with additional domain prior knowledge learned from multi-source domains.
Our framework generates satisfying segmentation results on unseen datasets and surpasses other domain generalization and network regularization methods.
arXiv Detail & Related papers (2020-10-13T07:28:39Z) - Hierarchical Opacity Propagation for Image Matting [15.265494938937737]
A novel structure for more direct alpha matte propagation between pixels is in demand.
HOP matting is capable of outperforming state-of-the-art matting methods.
arXiv Detail & Related papers (2020-04-07T10:39:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.