Content-aware Directed Propagation Network with Pixel Adaptive Kernel
Attention
- URL: http://arxiv.org/abs/2107.13144v1
- Date: Wed, 28 Jul 2021 02:59:19 GMT
- Title: Content-aware Directed Propagation Network with Pixel Adaptive Kernel
Attention
- Authors: Min-Cheol Sagong, Yoon-Jae Yeo, Seung-Won Jung, and Sung-Jea Ko
- Abstract summary: We propose a novel operation, called pixel adaptive kernel attention (PAKA)
PAKA provides directivity to the filter weights by multiplying spatially varying attention from learnable features.
Our method is trainable in an end-to-end manner and applicable to any CNN-based models.
- Score: 20.0783340490331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have been not only widespread but also
achieved noticeable results on numerous applications including image
classification, restoration, and generation. Although the weight-sharing
property of convolutions makes them widely adopted in various tasks, its
content-agnostic characteristic can also be considered a major drawback. To
solve this problem, in this paper, we propose a novel operation, called pixel
adaptive kernel attention (PAKA). PAKA provides directivity to the filter
weights by multiplying spatially varying attention from learnable features. The
proposed method infers pixel-adaptive attention maps along the channel and
spatial directions separately to address the decomposed model with fewer
parameters. Our method is trainable in an end-to-end manner and applicable to
any CNN-based models. In addition, we propose an improved information
aggregation module with PAKA, called the hierarchical PAKA module (HPM). We
demonstrate the superiority of our HPM by presenting state-of-the-art
performance on semantic segmentation compared to the conventional information
aggregation modules. We validate the proposed method through additional
ablation studies and visualizing the effect of PAKA providing directivity to
the weights of convolutions. We also show the generalizability of the proposed
method by applying it to multi-modal tasks especially color-guided depth map
super-resolution.
Related papers
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [63.54342601757723]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
We rectify 3D convolution by modifying its topology to enhance the rank upper-bound.
We also propose a novel diversity-aware regularization (DA-Reg) term that acts on the feature maps to maximize independence among elements.
To demonstrate the superiority of the proposed Re$3$-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks.
arXiv Detail & Related papers (2023-01-15T16:19:18Z) - Adaptive Single Image Deblurring [43.02281823557039]
We propose an efficient pixel adaptive and feature attentive design for handling large blur variations within and across different images.
We also propose an effective content-aware global-local filtering module that significantly improves the performance.
arXiv Detail & Related papers (2022-01-01T10:10:19Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Prior-Induced Information Alignment for Image Matting [28.90998570043986]
We propose a novel network named Prior-Induced Information Alignment Matting Network (PIIAMatting)
It can efficiently model the distinction of pixel-wise response maps and the correlation of layer-wise feature maps.
PIIAMatting performs favourably against state-of-the-art image matting methods on the Alphamatting.com, Composition-1K and Distinctions-646 dataset.
arXiv Detail & Related papers (2021-06-28T07:46:59Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining
Network [13.628218953897946]
In this paper, we propose an effective algorithm, called JDNet, to solve the single image deraining problem.
By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results.
arXiv Detail & Related papers (2020-08-06T17:04:34Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
We propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations.
We introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism.
arXiv Detail & Related papers (2020-01-09T07:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.