論文の概要: A Meta-Heuristic Search Algorithm based on Infrasonic Mating Displays in
Peafowls
- arxiv url: http://arxiv.org/abs/2106.14487v1
- Date: Mon, 28 Jun 2021 09:04:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 22:17:38.364901
- Title: A Meta-Heuristic Search Algorithm based on Infrasonic Mating Displays in
Peafowls
- Title(参考訳): ピーフクロウの近赤外交配ディスプレイに基づくメタヒューリスティック探索アルゴリズム
- Authors: Patrick Kenekayoro
- Abstract要約: 探索アルゴリズムの解空間が増大するにつれて、網羅的探索のような単純な手法は計算コストが高く、信頼性が低いものとなる。
本研究では, 重力探索アルゴリズムとオオカミの交尾行動から着想を得た赤外探索アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-heuristic techniques are important as they are used to find solutions to
computationally intractable problems. Simplistic methods such as exhaustive
search become computationally expensive and unreliable as the solution space
for search algorithms increase. As no method is guaranteed to perform better
than all others in all classes of optimization search problems, there is a need
to constantly find new and/or adapt old search algorithms. This research
proposes an Infrasonic Search Algorithm, inspired from the Gravitational Search
Algorithm and the mating behaviour in peafowls. The Infrasonic Search Algorithm
identified competitive solutions to 23 benchmark unimodal and multimodal test
functions compared to the Genetic Algorithm, Particle Swarm Optimization
Algorithm and the Gravitational Search Algorithm.
- Abstract(参考訳): メタヒューリスティック手法は計算的に難解な問題の解を見つけるために用いられるため重要である。
探索アルゴリズムの解空間が増大するにつれて、網羅的探索のような単純な手法は計算コストが高く、信頼性が低い。
最適化探索問題の全てのクラスにおいて、他のどの手法よりも優れた性能が保証されていないため、新しいアルゴリズムや古いアルゴリズムを常に見つける必要がある。
本研究は, 重力探索アルゴリズムと水鳥の交配行動に触発された近赤外探索アルゴリズムを提案する。
infrasonic searchアルゴリズムは、遺伝的アルゴリズム、粒子群最適化アルゴリズム、重力探索アルゴリズムと比較して、23のベンチマークユニモーダルおよびマルチモーダルテスト関数に対する競合ソリューションを特定した。
関連論文リスト
- A Three-Stage Algorithm for the Closest String Problem on Artificial and Real Gene Sequences [39.58317527488534]
ストロースト文字列問題(Closest String Problem)は、与えられた文字列の集合に属するすべての列から最小距離の文字列を見つけることを目的としたNPハード問題である。
本稿では,次の3段階のアルゴリズムを提案する。まず,検索領域を効果的に見つけるために,検索空間を削減するために,新しいアルファベットプルーニング手法を適用する。
第二に、解を見つけるためのビーム探索の変種を用いる。この方法は、部分解の期待距離スコアに基づいて、新たに開発された誘導関数を利用する。
論文 参考訳(メタデータ) (2024-07-17T21:26:27Z) - MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data
Challenge [110.7678032481059]
第1回機械学習重力波探索モックデータチャレンジ(MLGWSC-1)の結果を示す。
この課題のために、参加するグループは、より現実的な雑音に埋め込まれた複雑さと持続期間が増大する二元ブラックホールの融合から重力波信号を特定する必要があった。
この結果から,現在の機械学習検索アルゴリズムは,限られたパラメータ領域においてすでに十分敏感である可能性が示唆された。
論文 参考訳(メタデータ) (2022-09-22T16:44:59Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Algorithm Selection on a Meta Level [58.720142291102135]
本稿では,与えられたアルゴリズムセレクタの組み合わせに最適な方法を求めるメタアルゴリズム選択の問題を紹介する。
本稿では,メタアルゴリズム選択のための一般的な方法論フレームワークと,このフレームワークのインスタンス化として具体的な学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-20T11:23:21Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Critical Analysis: Bat Algorithm based Investigation and Application on
Several Domains [1.1802674324027231]
このアルゴリズムのアイデアはコウモリのエコーロケーション能力から取られた。
バットアルゴリズムは、背景、特徴、制限の観点から詳細に与えられる。
論文 参考訳(メタデータ) (2021-01-18T19:25:12Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Quantum Search with Prior Knowledge [15.384459603233978]
本稿では,Grover の探索アルゴリズムの新たな一般化を提案する。
提案アルゴリズムは,クエリ数が固定された場合の解を見つけるための最適成功確率を実現する。
論文 参考訳(メタデータ) (2020-09-18T09:50:33Z) - Searching for a Search Method: Benchmarking Search Algorithms for
Generating NLP Adversarial Examples [10.993342896547691]
自然言語処理(NLP)タスクの逆例を生成するために,複数のブラックボックス探索アルゴリズムの動作について検討した。
検索アルゴリズム,検索空間,検索予算の3つの要素を詳細に分析する。
論文 参考訳(メタデータ) (2020-09-09T17:04:42Z) - Performance Analysis of Meta-heuristic Algorithms for a Quadratic
Assignment Problem [6.555180412600522]
二次代入問題 (QAP) はNPハード問題に属する最適化問題である。
ヒューリスティックスとメタヒューリスティックスアルゴリズムはこの問題の一般的な解法である。
本稿では,QAPの解法に異なるメタヒューリスティックアルゴリズムを適用するための比較研究の1つである。
論文 参考訳(メタデータ) (2020-07-29T15:02:07Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。