論文の概要: Classification of Contract-Amendment Relationships
- arxiv url: http://arxiv.org/abs/2106.14619v1
- Date: Tue, 8 Jun 2021 07:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-04 19:37:12.127867
- Title: Classification of Contract-Amendment Relationships
- Title(参考訳): 契約・合意関係の分類
- Authors: Fuqi Song
- Abstract要約: 機械学習(ML)と自然言語処理(NLP)に基づく2つの文書間の修正関係を検出する手法を提案する。
このアルゴリズムは OCR (Optical Character Recognition) と NER (Named Entity Recognition) によって事前処理された2つのPDF文書を入力とし、各文書ペアの特徴を構築する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Contract Life-cycle Management (CLM), managing and tracking the master
agreements and their associated amendments is essential, in order to be kept
informed with different due dates and obligations. An automatic solution can
facilitate the daily jobs and improve the efficiency of legal practitioners. In
this paper, we propose an approach based on machine learning (ML) and Natural
Language Processing (NLP) to detect the amendment relationship between two
documents. The algorithm takes two PDF documents preprocessed by OCR (Optical
Character Recognition) and NER (Named Entity Recognition) as input, and then it
builds the features of each document pair and classifies the relationship. We
experimented with different configurations on a dataset consisting of 1124
pairs of contract-amendment documents in English and French. The best result
obtained a F1-score of 91%, which outperformed 23% compared to a
heuristic-based baseline.
- Abstract(参考訳): 契約ライフサイクルマネジメント(CLM)では、異なる期限と義務を通知するために、マスター契約とその関連する修正を管理し、追跡することが不可欠である。
自動ソリューションは、日々の仕事を容易にし、法律実務者の効率を向上させることができる。
本稿では,機械学習(ML)と自然言語処理(NLP)に基づく2つの文書間の修正関係を検出する手法を提案する。
このアルゴリズムは OCR (Optical Character Recognition) と NER (Named Entity Recognition) によって事前処理された2つのPDF文書を入力とし、各文書ペアの特徴を構築し、関係を分類する。
英語とフランス語で1124対の契約修正文書からなるデータセット上で,異なる構成を実験した。
その結果、F1スコアは91%となり、ヒューリスティックベースラインよりも23%向上した。
関連論文リスト
- Contextual Document Embeddings [77.22328616983417]
本稿では,コンテキスト化された文書埋め込みのための2つの補完手法を提案する。
第一に、文書近傍を明示的にバッチ内コンテキスト損失に組み込む別のコントラスト学習目標である。
第二に、隣接する文書情報をエンコードされた表現に明示的にエンコードする新しいコンテキストアーキテクチャ。
論文 参考訳(メタデータ) (2024-10-03T14:33:34Z) - Learning from Litigation: Graphs and LLMs for Retrieval and Reasoning in eDiscovery [6.037276428689637]
本稿では2つの世界の強みを組み合わせたハイブリッド手法であるDISCOG(Disdiscovery Graph)を紹介する。
本手法は,手作業と比較して文書レビューコストを99.9%削減し,LCMに基づく分類法と比較して95%削減する。
論文 参考訳(メタデータ) (2024-05-29T15:08:55Z) - In-context Pretraining: Language Modeling Beyond Document Boundaries [137.53145699439898]
In-Context Pretrainingは、言語モデルが関連するドキュメントのシーケンスで事前トレーニングされる新しいアプローチである。
本稿では, 近接探索を効率的に行うための近似アルゴリズムを提案する。
より複雑なコンテキスト推論を必要とするタスクの顕著な改善が見られます。
論文 参考訳(メタデータ) (2023-10-16T17:57:12Z) - A Hierarchical Neural Framework for Classification and its Explanation in Large Unstructured Legal Documents [0.5812284760539713]
我々はこの問題を「注釈付き法律文書」と定義する。
我々はMEScと呼ぶディープラーニングに基づく分類フレームワークを提案する。
また、ORSEと呼ばれる説明抽出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-19T12:18:28Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
CrossNERは多言語コーパスの不足により不均一な性能から生じる課題に直面している。
言語横断的名前付きエンティティ認識(mCL-NER)のためのマルチビューコントラスト学習を提案する。
40言語にまたがるXTREMEベンチマーク実験では、従来のデータ駆動型およびモデルベースアプローチよりもmCL-NERの方が優れていることを示した。
論文 参考訳(メタデータ) (2023-08-17T16:02:29Z) - Towards Unsupervised Recognition of Token-level Semantic Differences in
Related Documents [61.63208012250885]
意味的差異をトークンレベルの回帰タスクとして認識する。
マスク付き言語モデルに依存する3つの教師なしアプローチについて検討する。
その結果,単語アライメントと文レベルのコントラスト学習に基づくアプローチは,ゴールドラベルと強い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-05-22T17:58:04Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z) - Pairwise Multi-Class Document Classification for Semantic Relations
between Wikipedia Articles [5.40541521227338]
2つの文書間の関係をペアワイズ文書分類タスクとして検索する問題をモデル化する。
文書間の意味的関係を見つけるために,GloVe, paragraph-s,BERT,XLNetなどの一連の手法を適用する。
我々は,新たに提案された32,168のウィキペディア記事ペアと,セマンティックドキュメントの関係を定義するウィキデータプロパティに関する実験を行った。
論文 参考訳(メタデータ) (2020-03-22T12:52:56Z) - Massively Multilingual Document Alignment with Cross-lingual
Sentence-Mover's Distance [8.395430195053061]
ドキュメントアライメントは、互いに同等のコンテンツや翻訳を持つ2つの異なる言語で文書のペアを特定することを目的としている。
言語間文の埋め込みを利用した教師なしスコアリング機能を開発し、異なる言語の文書間の意味的距離を計算する。
これらのセマンティック距離は、文書アライメントアルゴリズムを誘導して、低言語、中言語、高リソースの様々なペアで言語間ウェブ文書を適切にペアリングする。
論文 参考訳(メタデータ) (2020-01-31T05:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。