論文の概要: Keyphrase Generation for Scientific Document Retrieval
- arxiv url: http://arxiv.org/abs/2106.14726v1
- Date: Mon, 28 Jun 2021 13:55:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 19:38:31.597001
- Title: Keyphrase Generation for Scientific Document Retrieval
- Title(参考訳): 科学文書検索のためのキーフレーズ生成
- Authors: Florian Boudin, Ygor Gallina, Akiko Aizawa
- Abstract要約: 本研究は,シーケンス・ツー・シーケンス・モデルが文書検索性能を大幅に向上できることを示す実証的証拠を提供する。
本稿では,キーフレーズ生成モデルの限界をよりよく理解することのできる,新たな外部評価フレームワークを提案する。
- 参考スコア(独自算出の注目度): 28.22174864849121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequence-to-sequence models have lead to significant progress in keyphrase
generation, but it remains unknown whether they are reliable enough to be
beneficial for document retrieval. This study provides empirical evidence that
such models can significantly improve retrieval performance, and introduces a
new extrinsic evaluation framework that allows for a better understanding of
the limitations of keyphrase generation models. Using this framework, we point
out and discuss the difficulties encountered with supplementing documents with
-- not present in text -- keyphrases, and generalizing models across domains.
Our code is available at https://github.com/boudinfl/ir-using-kg
- Abstract(参考訳): sequence-to-sequenceモデルによってkeyphrase生成は著しく進展したが、ドキュメント検索に十分な信頼性があるかどうかはまだ不明である。
本研究は,これらのモデルが検索性能を大幅に改善できることを示す実証的証拠を提供するとともに,キーフレーズ生成モデルの限界をよりよく理解することのできる,新たな外部評価フレームワークを提案する。
このフレームワークを使用すると、テキストには存在しないドキュメントを補完したり、ドメインをまたいでモデルを一般化したりするのに直面する困難を指摘し、議論する。
私たちのコードはhttps://github.com/boudinfl/ir-using-kgで入手できる。
関連論文リスト
- Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - Neural Keyphrase Generation: Analysis and Evaluation [47.004575377472285]
本稿では,T5(事前学習型トランスフォーマー),CatSeq-Transformer(非事前学習型トランスフォーマー),ExHiRD(リカレントニューラルネットワーク)の3つの強力なモデルで示される傾向について検討する。
2つのキーフレーズの類似性を評価するために,SoftKeyScoreという新しいメトリクスフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-27T00:10:21Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
様々なモデルの恩恵を受けながらテキストを生成するシンプルで一般的な推論アルゴリズムであるTwist decodingを導入する。
我々の方法は、語彙、トークン化、あるいは生成順序が共有されていると仮定しない。
論文 参考訳(メタデータ) (2022-05-19T01:27:53Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Deep Keyphrase Completion [59.0413813332449]
Keyphraseは、非常にコンパクトで簡潔で、意味に満ちた文書内容の正確な情報を提供し、談話理解、組織化、テキスト検索に広く利用されている。
本論文では,文書内容と既知のキーフレーズの数が極めて限られているため,テキストキーフレーズの完全化(KPC)を提案し,文書中のキーフレーズをより多く生成する(科学出版など)。
深層学習フレームワークを通じて、既知のキーフレーズとともに文書内容の深い意味的意味を捉えようとすることから、textitdeep keyphrase completion (DKPC) と命名する。
論文 参考訳(メタデータ) (2021-10-29T07:15:35Z) - Towards Document-Level Paraphrase Generation with Sentence Rewriting and
Reordering [88.08581016329398]
文書レベルのパラフレーズ生成のためのCoRPG(Coherence Relation Guided Paraphrase Generation)を提案する。
グラフGRUを用いて、コヒーレンス関係グラフを符号化し、各文のコヒーレンス対応表現を得る。
我々のモデルは、より多様性とセマンティックな保存を伴う文書パラフレーズを生成することができる。
論文 参考訳(メタデータ) (2021-09-15T05:53:40Z) - Heterogeneous Graph Neural Networks for Keyphrase Generation [13.841525616800908]
本稿では,関連する参照から明示的な知識を抽出するグラフベースの新しい手法を提案する。
我々のモデルはまず、あらかじめ定義されたインデックスから、ソースドキュメントに似た文書とキーワードのペアを参照として検索する。
復号処理を導くために、ソース文書と参照の両方から適切な単語を直接コピーする階層的注目・複写機構を導入する。
論文 参考訳(メタデータ) (2021-09-10T07:17:07Z) - Unsupervised Deep Keyphrase Generation [14.544869226959612]
keyphrase生成は、長い文書を敬語句のコレクションにまとめることを目的としている。
ディープニューラルモデルは、このタスクにおいて顕著な成功を示し、文書から欠落するキーフレーズを予測することができる。
キーフレーズ生成のための新しい手法であるAutoKeyGenについて,人間のアノテーションを介さずに提示する。
論文 参考訳(メタデータ) (2021-04-18T05:53:19Z) - Keyphrase Extraction with Span-based Feature Representations [13.790461555410747]
キーフレーズは、文書を特徴付ける意味メタデータを提供することができる。
キーフレーズ抽出のための3つのアプローチ: (i) 従来の2段階ランキング法、 (ii) シーケンスラベリング、 (iii) ニューラルネットワークを用いた生成。
本稿では,すべてのコンテンツトークンから直接,キーフレーズのスパン的特徴表現を抽出する新規スパンキーフレーズ抽出モデルを提案する。
論文 参考訳(メタデータ) (2020-02-13T09:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。