論文の概要: Certifiable Machine Unlearning for Linear Models
- arxiv url: http://arxiv.org/abs/2106.15093v1
- Date: Tue, 29 Jun 2021 05:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 15:19:16.499444
- Title: Certifiable Machine Unlearning for Linear Models
- Title(参考訳): 線形モデルのための認証マシンアンラーニング
- Authors: Ananth Mahadevan and Michael Mathioudakis
- Abstract要約: 機械学習は、トレーニングされたトレーニングデータのサブセットが削除された後、機械学習(ML)モデルを更新するタスクである。
本稿では,線形モデルに対する3つの非学習手法について実験的に検討する。
- 参考スコア(独自算出の注目度): 1.484852576248587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning is the task of updating machine learning (ML) models after
a subset of the training data they were trained on is deleted. Methods for the
task are desired to combine effectiveness and efficiency, i.e., they should
effectively "unlearn" deleted data, but in a way that does not require
excessive computation effort (e.g., a full retraining) for a small amount of
deletions. Such a combination is typically achieved by tolerating some amount
of approximation in the unlearning. In addition, laws and regulations in the
spirit of "the right to be forgotten" have given rise to requirements for
certifiability, i.e., the ability to demonstrate that the deleted data has
indeed been unlearned by the ML model.
In this paper, we present an experimental study of the three state-of-the-art
approximate unlearning methods for linear models and demonstrate the trade-offs
between efficiency, effectiveness and certifiability offered by each method. In
implementing the study, we extend some of the existing works and describe a
common ML pipeline to compare and evaluate the unlearning methods on six
real-world datasets and a variety of settings. We provide insights into the
effect of the quantity and distribution of the deleted data on ML models and
the performance of each unlearning method in different settings. We also
propose a practical online strategy to determine when the accumulated error
from approximate unlearning is large enough to warrant a full retrain of the ML
model.
- Abstract(参考訳): 機械学習は、トレーニングされたトレーニングデータのサブセットが削除された後、機械学習(ML)モデルを更新するタスクである。
タスクのメソッドは、有効性と効率性、すなわち、削除されたデータを効果的に「解き放つ」ことが望ましいが、少量の削除のために過剰な計算労力(例えば、完全な再訓練)を必要としない方法である。
このような組み合わせは、通常、アンラーニングである程度の近似を解き放つことによって達成される。
さらに、「忘れられる権利」の精神における法律や規則は、正当性、すなわち削除されたデータが実際にMLモデルによって学習されていないことを示す能力の要求を生じさせた。
本稿では,線形モデルに対する3つの非学習手法に関する実験的検討を行い,各手法の効率性,有効性,妥当性のトレードオフを実証する。
本研究の実施にあたっては,既存の作業を拡張し,実世界の6つのデータセットとさまざまな設定に関する未学習手法の比較と評価を行うための共通MLパイプラインを記述する。
本稿では,削除されたデータの量と分布がmlモデルに与える影響と,各学習方法の性能に与える影響について考察する。
また,機械学習モデルの完全再トレーニングを保証できるほど,学習未学習からの累積誤差が大きくなるかどうかを判断する実用的なオンライン戦略を提案する。
関連論文リスト
- Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
本稿では,事前訓練された大規模言語モデルのタスク適応フェーズに対する効率的なアンラーニング手法に着目した。
タスク適応のための文脈内学習を行うLLMの能力は、タスク適応トレーニングデータの効率的なアンラーニングを可能にする。
本稿では,様々な推論コストを考慮に入れた非学習コストの包括的尺度を提案する。
論文 参考訳(メタデータ) (2024-02-01T16:43:04Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - In-Context Unlearning: Language Models as Few Shot Unlearners [27.962361828354716]
我々は,Large Language Models (LLMs) のための新しいアンラーニング手法を提案する。
このメソッドは、モデルパラメータを更新することなく、コンテキスト内で特定の種類の入力を提供することで、モデルからインスタンスを解放する。
実験の結果、文脈内アンラーニングは、モデルパラメータへのアクセスを必要とする他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-11T15:19:31Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Fast Yet Effective Machine Unlearning [6.884272840652062]
本稿では,誤り最大化雑音発生と不適切な反動に基づく重み操作を併用した新しい機械学習フレームワークを提案する。
モデル全体の精度を著しく保ちながら、優れた未学習を示す。
この作業は、ディープネットワークにおけるアンラーニングの迅速かつ簡単な実装に向けた重要なステップである。
論文 参考訳(メタデータ) (2021-11-17T07:29:24Z) - On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning [13.149070833843133]
機械学習、すなわち、トレーニングデータのいくつかを忘れるモデルを持つことは、プライバシー法が忘れられる権利の変種を促進するにつれ、ますます重要になっている。
まず、ほぼ未学習のモデルが正確に訓練されたモデルに近いことを証明しようとする、近似的未学習の定義は、異なるデータセットを用いて同じモデルを得ることができるため、正しくないことを示す。
そして、正確なアンラーニングアプローチに目を向け、アンラーニングのクレームの検証方法を尋ねます。
論文 参考訳(メタデータ) (2021-10-22T16:16:56Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。