論文の概要: IREM: High-Resolution Magnetic Resonance (MR) Image Reconstruction via
Implicit Neural Representation
- arxiv url: http://arxiv.org/abs/2106.15097v1
- Date: Tue, 29 Jun 2021 05:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 05:12:07.504563
- Title: IREM: High-Resolution Magnetic Resonance (MR) Image Reconstruction via
Implicit Neural Representation
- Title(参考訳): IREM: 入射神経表現による高分解能MR画像再構成
- Authors: Qing Wu, Yuwei Li, Lan Xu, Ruiming Feng, Hongjiang Wei, Qing Yang,
Boliang Yu, Xiaozhao Liu, Jingyi Yu, and Yuyao Zhang
- Abstract要約: 本稿では、複数の低分解能MR画像に基づいてトレーニングしたIREMと呼ばれる新しい画像再構成ネットワークを提案する。
IREMはスキャン時間を短縮し、SNRと局所像の詳細な点から高分解能MRイメージングを実現する。
- 参考スコア(独自算出の注目度): 33.55719364798433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For collecting high-quality high-resolution (HR) MR image, we propose a novel
image reconstruction network named IREM, which is trained on multiple
low-resolution (LR) MR images and achieve an arbitrary up-sampling rate for HR
image reconstruction. In this work, we suppose the desired HR image as an
implicit continuous function of the 3D image spatial coordinate and the
thick-slice LR images as several sparse discrete samplings of this function.
Then the super-resolution (SR) task is to learn the continuous volumetric
function from a limited observations using an fully-connected neural network
combined with Fourier feature positional encoding. By simply minimizing the
error between the network prediction and the acquired LR image intensity across
each imaging plane, IREM is trained to represent a continuous model of the
observed tissue anatomy. Experimental results indicate that IREM succeeds in
representing high frequency image feature, and in real scene data collection,
IREM reduces scan time and achieves high-quality high-resolution MR imaging in
terms of SNR and local image detail.
- Abstract(参考訳): 高品質高分解能MR画像の収集のために,複数の低分解能MR画像に基づいてトレーニングし,任意のアップサンプリング率を実現するIREMという新しい画像再構成ネットワークを提案する。
本研究では、3次元画像空間座標の暗黙的連続関数として所望のHR像と、この関数のスパース離散サンプリングとして厚めのLR像とを仮定する。
次に、超分解能(SR)タスクは、フル接続ニューラルネットワークとフーリエ特徴位置符号化を組み合わせて、限られた観測から連続体積関数を学習することである。
各撮像面におけるネットワーク予測と取得したLR画像強度の誤差を最小化することにより、IREMは観察された組織解剖の連続したモデルを表現するように訓練される。
実験結果から, iremは高周波画像特徴の表現に成功し, 実シーンデータ収集において, スキャン時間を短縮し, snrと局所画像の精細さで高品質の高分解能mr画像を実現する。
関連論文リスト
- A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
暗黙的神経表現(INR)は、物体の内部連続性を学ぶための新しいディープラーニングパラダイムとして登場した。
提案手法は,アーティファクトやノイズのエイリアスを抑えることにより,既存の手法よりも優れる。
良質な結果と走査特異性により,提案手法は並列MRIのデータ取得をさらに加速させる可能性を秘めている。
論文 参考訳(メタデータ) (2022-10-19T10:16:03Z) - Unsupervised Representation Learning for 3D MRI Super Resolution with Degradation Adaptation [28.296921790037725]
高分解能(HR)磁気共鳴イメージングは、診断や画像誘導治療において医師を支援する上で重要である。
深層学習に基づく超解像再構成(SRR)は、低分解能(LR)画像から超解像(SR)画像を生成するための有望な解決策として登場した。
このようなニューラルネットワークのトレーニングには、画像取得中と画像取得間の患者の動きのために取得が困難である、整列したHRとLRイメージペアが必要である。
論文 参考訳(メタデータ) (2022-05-13T21:07:26Z) - An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic
Resonance Image using Implicit Neural Representation [37.43985628701494]
高分解能(HR)医療画像は、早期かつ正確な診断を容易にするために、豊富な解剖学的構造の詳細を提供する。
近年の研究では、深部畳み込みニューラルネットワークを用いて、低分解能(LR)入力から等方性HR MR像を復元できることが示されている。
Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images。
論文 参考訳(メタデータ) (2021-10-27T14:48:54Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
画像SRと画像再スケーリングのための統合フレームワークとして階層的条件フロー(HCFlow)を提案する。
HCFlowは、LR画像と残りの高周波成分の分布を同時にモデル化することにより、HRとLR画像ペア間のマッピングを学習する。
さらに性能を高めるために、知覚的損失やGAN損失などの他の損失と、トレーニングで一般的に使用される負の対数類似損失とを組み合わせる。
論文 参考訳(メタデータ) (2021-08-11T16:11:01Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
自己スーパービジョンとサイクル生成対向ネットワーク(CycleGAN)に基づく新しい知覚整合超音波画像超解像法を提案する。
まず,検査用超音波LR画像のHR父子とLR子を画像強調により生成する。
次に、LR-SR-LRとHR-LR-SRのサイクル損失と判別器の対角特性をフル活用して、より知覚的に一貫性のあるSR結果を生成する。
論文 参考訳(メタデータ) (2020-12-28T08:24:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
本稿では、周波数空間データから再構成するための汎用的なビルディングブロックとして、周波数と画像の特徴表現を明示的に組み合わせたニューラルネットワーク層が利用できることを示す。
提案した共同学習方式により、周波数空間に固有のアーティファクトの補正と画像空間表現の操作を両立させ、ネットワークのすべての層でコヒーレントな画像構造を再構築することができる。
論文 参考訳(メタデータ) (2020-07-02T23:54:46Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
空間情報とスペクトル情報の相互モダリティ分布が問題となる。
本稿では,PZRes-Netという,新しいテクスライトウェイトなディープニューラルネットワークベースのフレームワークを提案する。
本フレームワークは,高分解能かつテクテッセロ中心の残像を学習し,シーンの空間的詳細を高頻度で表現する。
論文 参考訳(メタデータ) (2020-06-18T06:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。