論文の概要: An Efficient Cervical Whole Slide Image Analysis Framework Based on
Multi-scale Semantic and Spatial Features using Deep Learning
- arxiv url: http://arxiv.org/abs/2106.15113v1
- Date: Tue, 29 Jun 2021 06:24:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 15:28:19.702004
- Title: An Efficient Cervical Whole Slide Image Analysis Framework Based on
Multi-scale Semantic and Spatial Features using Deep Learning
- Title(参考訳): 深層学習を用いたマルチスケール意味的・空間的特徴量に基づく頚椎全摘画像解析フレームワーク
- Authors: Ziquan Wei, Shenghua Cheng, Xiuli Liu, Shaoqun Zeng
- Abstract要約: 本研究では,YOLCO(You Only Look Cytopathology Once)という名前の軽量モデルを構築するために,マルチスケール接続を充実させることにより,新しいインライン接続ネットワーク(InCNet)を設計する。
提案したモデルでは、入力サイズをメガピクセルに拡大し、平均リピートで重なり合うことなくWSIを縫合することができる。
統合マルチスケールマルチタスクの特徴を分類するためのTransformerに基づいて、実験結果は、WSI分類における従来の方法よりも0.872$ AUCスコアが良く、2.51times$速く見える。
- 参考スコア(独自算出の注目度): 2.7218168309244652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital gigapixel whole slide image (WSI) is widely used in clinical
diagnosis, and automated WSI analysis is key for computer-aided diagnosis.
Currently, analyzing the integrated descriptor of probabilities or feature maps
from massive local patches encoded by ResNet classifier is the main manner for
WSI-level prediction. Feature representations of the sparse and tiny lesion
cells in cervical slides, however, are still challengeable for the
under-promoted upstream encoders, while the unused spatial representations of
cervical cells are the available features to supply the semantics analysis. As
well as patches sampling with overlap and repetitive processing incur the
inefficiency and the unpredictable side effect. This study designs a novel
inline connection network (InCNet) by enriching the multi-scale connectivity to
build the lightweight model named You Only Look Cytopathology Once (YOLCO) with
the additional supervision of spatial information. The proposed model allows
the input size enlarged to megapixel that can stitch the WSI without any
overlap by the average repeats decreased from $10^3\sim10^4$ to $10^1\sim10^2$
for collecting features and predictions at two scales. Based on Transformer for
classifying the integrated multi-scale multi-task features, the experimental
results appear $0.872$ AUC score better and $2.51\times$ faster than the best
conventional method in WSI classification on multicohort datasets of 2,019
slides from four scanning devices.
- Abstract(参考訳): 臨床診断にはデジタルギガピクセル全スライド画像(WSI)が広く使われており,自動WSI分析がコンピュータ支援診断の鍵となっている。
現在、ResNet分類器によって符号化された大量のローカルパッチから、確率の統合記述子や特徴マップを分析することが、WSIレベルの予測の主要な方法である。
しかし, 頚部スライドにおけるスパース細胞と小病変細胞の特徴表現は, 上流部エンコーダでは依然として困難であり, 未使用の頚部細胞の空間表現はセマンティクス解析に有効な特徴である。
重複および繰り返し処理を伴うパッチサンプリングと同様に、非効率性と予測不能な副作用を引き起こす。
本研究では,YOLCO(You Only Look Cytopathology Once)という名前の軽量モデルを構築するために,空間情報のさらなる監視を行うことにより,インライン接続ネットワーク(InCNet)を設計する。
提案モデルでは,WSIを重なりなく縫合可能なメガピクセルへの入力サイズを10^3\sim10^4$から10^1\sim10^2$に拡大し,特徴と予測を2つのスケールで収集する。
統合マルチスケールマルチタスクの特徴を分類するTransformerに基づいて、実験結果は4つの走査デバイスから2,019のスライドからなるマルチコートデータセットをWSI分類において最も優れた方法よりも0.872$ AUCスコアと2.51\times$高速に表示される。
関連論文リスト
- A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Evolutionary Computation in Action: Feature Selection for Deep Embedding
Spaces of Gigapixel Pathology Images [0.6037276428689636]
本稿では, 大規模多目的最適化(LSMOP)に基づくWSI表現の進化的アプローチを提案する。
The Cancer Genome Atlas(TC)画像を用いて,WSI表現,分類精度,特徴品質の観点から提案手法を検証した。
提案した進化的アルゴリズムは、最先端の手法によって提供されるコードよりも8%高い精度でWSIを表現するための非常にコンパクトな特徴ベクトルを求める。
論文 参考訳(メタデータ) (2023-03-02T03:36:15Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Video-TransUNet: Temporally Blended Vision Transformer for CT VFSS
Instance Segmentation [11.575821326313607]
本稿では,TransUNetの深層学習フレームワークに時間的特徴ブレンドを組み込んだ医療用CTビデオのセグメンテーションのための深層アーキテクチャであるVideo-TransUNetを提案する。
特に,提案手法は,ResNet CNNバックボーンによるフレーム表現,テンポラルコンテキストモジュールによるマルチフレーム機能ブレンディング,UNetベースの畳み込みデコナールアーキテクチャによる複数ターゲットの再構築,などを実現する。
論文 参考訳(メタデータ) (2022-08-17T14:28:58Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
セグメンテーションネットワークによって抽出されたマルチスケール特徴の識別能力を高めるために,コントラスト学習を適用した。
まず、エンコーダのマルチスケール表現を共通の特徴空間にマッピングすることにより、教師付き局所言語制約の新しい形式をインスタンス化する。
論文 参考訳(メタデータ) (2022-03-25T01:24:24Z) - Pay Attention with Focus: A Novel Learning Scheme for Classification of
Whole Slide Images [8.416553728391309]
スライド画像全体(WSI)を解析するための新しい2段階アプローチを提案する。
まず、WSIから代表パッチ(モザイクと呼ばれる)を抽出する。
モザイクの各パッチは、ディープネットワークを用いて特徴ベクトルに符号化される。
第2段階では、WSIから符号化されたパッチレベルの一連の特徴を用いて、一次診断確率を算出する。
論文 参考訳(メタデータ) (2021-06-11T21:59:02Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。