Machine learning for plant microRNA prediction: A systematic review
- URL: http://arxiv.org/abs/2106.15159v1
- Date: Tue, 29 Jun 2021 08:22:57 GMT
- Title: Machine learning for plant microRNA prediction: A systematic review
- Authors: Shyaman Jayasundara, Sandali Lokuge, Puwasuru Ihalagedara and
Damayanthi Herath
- Abstract summary: MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play an important role in gene regulation.
computational and machine learning-based approaches have been adopted to predict microRNAs.
This systematic review focuses on the machine learning methods developed for identification in plants.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play an
important role in post-transcriptional gene regulation. However, the
experimental determination of miRNA sequence and structure is both expensive
and time-consuming. Therefore, computational and machine learning-based
approaches have been adopted to predict novel microRNAs. With the involvement
of data science and machine learning in biology, multiple research studies have
been conducted to find microRNAs with different computational methods and
different miRNA features. Multiple approaches are discussed in detail
considering the learning algorithm/s used, features considered, dataset/s used
and the criteria used in evaluations. This systematic review focuses on the
machine learning methods developed for miRNA identification in plants. This
will help researchers to gain a detailed idea about past studies and identify
novel paths that solve drawbacks occurred in past studies. Our findings
highlight the need for plant-specific computational methods for miRNA
identification.
Related papers
- LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs [11.346750562942345]
Long non-coding RNAs (lncRNAs) serve as crucial regulators in numerous biological processes.
Deep learning-based approaches have been introduced to classify lncRNAs.
LoRA-BERT is designed to capture the importance of nucleotide-level information during sequence classification.
arXiv Detail & Related papers (2024-11-11T22:17:01Z) - Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
understanding and predicting RNA behavior is a challenge due to the complexity of RNA structures and interactions.
Current RNA models have yet to match the performance observed in the protein domain.
ChaRNABERT is able to reach state-of-the-art performance on several tasks in established benchmarks.
arXiv Detail & Related papers (2024-11-05T21:56:16Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - Description Generation using Variational Auto-Encoders for precursor
microRNA [5.6710852973206105]
We propose a novel framework, which makes use of generative modeling through Vari Auto-Encoders to uncover latent factors of pre-miRNA.
Applying the framework to classification, we obtain a high reconstruction and classification performance, while also developing an accurate description.
arXiv Detail & Related papers (2023-11-29T15:41:45Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
We develop the first end-to-end deep learning approach, E2Efold-3D, to accurately perform the textitde novo RNA structure prediction.
Several novel components are proposed to overcome the data scarcity, such as a fully-differentiable end-to-end pipeline, secondary structure-assisted self-distillation, and parameter-efficient backbone formulation.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
This study investigates the performance of three deep learning approaches for object detection on the AGAR dataset.
The achieved results may serve as a benchmark for future experiments.
arXiv Detail & Related papers (2021-08-23T12:06:00Z) - Computational prediction of RNA tertiary structures using machine
learning methods [14.35527588241679]
Computational prediction approaches can help to understand RNA structures and their stabilizing factors.
Although their usage in protein-related fields has a long history, the use of machine learning methods in predicting RNA tertiary structures is new and rare.
arXiv Detail & Related papers (2020-09-03T04:01:43Z) - Review of Machine-Learning Methods for RNA Secondary Structure
Prediction [21.3539253580504]
We provide a comprehensive overview of RNA secondary structure prediction methods based on machine-learning technologies.
The current pending issues in the field of RNA secondary structure prediction and future trends are also discussed.
arXiv Detail & Related papers (2020-09-01T03:17:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.