A Comprehensive Review on RNA Subcellular Localization Prediction
- URL: http://arxiv.org/abs/2504.17162v1
- Date: Thu, 24 Apr 2025 00:47:31 GMT
- Title: A Comprehensive Review on RNA Subcellular Localization Prediction
- Authors: Cece Zhang, Xuehuan Zhu, Nick Peterson, Jieqiong Wang, Shibiao Wan,
- Abstract summary: Long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other RNAs play a critical role in determining their biological functions.<n>Traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly.<n> Computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives.
- Score: 0.125828876338076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The subcellular localization of RNAs, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other smaller RNAs, plays a critical role in determining their biological functions. For instance, lncRNAs are predominantly associated with chromatin and act as regulators of gene transcription and chromatin structure, while mRNAs are distributed across the nucleus and cytoplasm, facilitating the transport of genetic information for protein synthesis. Understanding RNA localization sheds light on processes like gene expression regulation with spatial and temporal precision. However, traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly. To overcome these challenges, computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives, enabling large-scale prediction of RNA subcellular localization. This paper provides a comprehensive review of the latest advancements in AI-based approaches for RNA subcellular localization prediction, covering various RNA types and focusing on sequence-based, image-based, and hybrid methodologies that combine both data types. We highlight the potential of these methods to accelerate RNA research, uncover molecular pathways, and guide targeted disease treatments. Furthermore, we critically discuss the challenges in AI/ML approaches for RNA subcellular localization, such as data scarcity and lack of benchmarks, and opportunities to address them. This review aims to serve as a valuable resource for researchers seeking to develop innovative solutions in the field of RNA subcellular localization and beyond.
Related papers
- Regulatory DNA sequence Design with Reinforcement Learning [56.20290878358356]
We propose a generative approach that leverages reinforcement learning to fine-tune a pre-trained autoregressive model.
We evaluate our method on promoter design tasks in two yeast media conditions and enhancer design tasks for three human cell types.
arXiv Detail & Related papers (2025-03-11T02:33:33Z) - BAnG: Bidirectional Anchored Generation for Conditional RNA Design [15.92155083519678]
RNA-BAnG is a deep learning-based model designed to generate RNA sequences for protein interactions without these requirements.<n>We first validate our method on generic synthetic tasks involving similar localized motifs to those appearing in RNAs.<n>We then evaluate our model on biological sequences, showing its effectiveness for conditional RNA sequence design given a binding protein.
arXiv Detail & Related papers (2025-02-28T17:51:00Z) - LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs [11.346750562942345]
Long non-coding RNAs (lncRNAs) serve as crucial regulators in numerous biological processes.
Deep learning-based approaches have been introduced to classify lncRNAs.
LoRA-BERT is designed to capture the importance of nucleotide-level information during sequence classification.
arXiv Detail & Related papers (2024-11-11T22:17:01Z) - Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
understanding and predicting RNA behavior is a challenge due to the complexity of RNA structures and interactions.
Current RNA models have yet to match the performance observed in the protein domain.
ChaRNABERT is able to reach state-of-the-art performance on several tasks in established benchmarks.
arXiv Detail & Related papers (2024-11-05T21:56:16Z) - RNA-GPT: Multimodal Generative System for RNA Sequence Understanding [6.611255836269348]
RNAs are essential molecules that carry genetic information vital for life.
Despite this importance, RNA research is often hindered by the vast literature available on the topic.
We introduce RNA-GPT, a multi-modal RNA chat model designed to simplify RNA discovery.
arXiv Detail & Related papers (2024-10-29T06:19:56Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
We propose RNACG (RNA Generator), a universal framework for RNA sequence design based on flow matching.<n>By unifying sequence generation under a single framework, RNACG enables the integration of multiple RNA design paradigms.
arXiv Detail & Related papers (2024-07-29T09:46:46Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).<n>First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.<n>Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.<n>Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - Description Generation using Variational Auto-Encoders for precursor
microRNA [5.6710852973206105]
We propose a novel framework, which makes use of generative modeling through Vari Auto-Encoders to uncover latent factors of pre-miRNA.
Applying the framework to classification, we obtain a high reconstruction and classification performance, while also developing an accurate description.
arXiv Detail & Related papers (2023-11-29T15:41:45Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.<n>RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
arXiv Detail & Related papers (2022-07-04T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.